Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2017

23-04-2016

On linear codes admitting large automorphism groups

Published in: Designs, Codes and Cryptography | Issue 1/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Linear codes with large automorphism groups are constructed. Most of them are suitable for permutation decoding. In some cases they are also optimal. For instance, we construct an optimal binary code of length \(n=252\) and dimension \(k=12\) having minimum distance \(d=120\) and automorphism group isomorphic to \(\text {PSL}(2,8)\rtimes \text {C}_{3}\).
Literature
2.
go back to reference Berger T.P.: Cyclic alternant codes induced by an automorphism of a GRS code. In: Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemporary Mathematics, vol. 225, pp. 143–154. American Mathematical Society, Providence (1999). Berger T.P.: Cyclic alternant codes induced by an automorphism of a GRS code. In: Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemporary Mathematics, vol. 225, pp. 143–154. American Mathematical Society, Providence (1999).
3.
go back to reference Bierbrauer J.: Introduction to Coding Theory, Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton (2005). Bierbrauer J.: Introduction to Coding Theory, Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton (2005).
4.
go back to reference Bosma W., Cannon J.J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). Bosma W., Cannon J.J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997).
5.
go back to reference Braun M., Kohnert A., Wassermann A.: Optimal linear codes from matrix groups. IEEE Trans. Inf. Theory 51(12), 4247–4251 (2005). Braun M., Kohnert A., Wassermann A.: Optimal linear codes from matrix groups. IEEE Trans. Inf. Theory 51(12), 4247–4251 (2005).
6.
go back to reference Camion P.: Linear codes with given automorphism groups. Discret. Math. 3, 33–45 (1972). Camion P.: Linear codes with given automorphism groups. Discret. Math. 3, 33–45 (1972).
7.
go back to reference Cossidente A., Nolè C., Sonnino A.: Cap codes arising from duality. Bull. Inst. Combin. Appl. 67, 33–42 (2013). Cossidente A., Nolè C., Sonnino A.: Cap codes arising from duality. Bull. Inst. Combin. Appl. 67, 33–42 (2013).
8.
go back to reference Cossidente A., Sonnino A.: Finite geometry and the Gale transform. Discret. Math. 310(22), 3206–3210 (2010). Cossidente A., Sonnino A.: Finite geometry and the Gale transform. Discret. Math. 310(22), 3206–3210 (2010).
9.
go back to reference Cossidente A., Sonnino A.: Some recent results in finite geometry and coding theory arising from the Gale transform. Rend. Mat. Appl. (7) 30(1), 67–76. (2010). Cossidente A., Sonnino A.: Some recent results in finite geometry and coding theory arising from the Gale transform. Rend. Mat. Appl. (7) 30(1), 67–76. (2010).
10.
go back to reference Cossidente A., Sonnino A.: Linear codes arising from the Gale transform of distinguished subsets of some projective spaces. Discret. Math. 312(3), 647–651 (2012). Cossidente A., Sonnino A.: Linear codes arising from the Gale transform of distinguished subsets of some projective spaces. Discret. Math. 312(3), 647–651 (2012).
11.
go back to reference Crnković D., Rukavina S., Simčić L.: Binary doubly-even self-dual codes of length 72 with large automorphism groups. Math. Commun. 18(2), 297–308 (2013). Crnković D., Rukavina S., Simčić L.: Binary doubly-even self-dual codes of length 72 with large automorphism groups. Math. Commun. 18(2), 297–308 (2013).
12.
go back to reference Fish W., Key J.D., Mwambene E.: Partial permutation decoding for simplex codes. Adv. Math. Commun. 6(4), 505–516 (2012). Fish W., Key J.D., Mwambene E.: Partial permutation decoding for simplex codes. Adv. Math. Commun. 6(4), 505–516 (2012).
13.
go back to reference Giulietti M., Korchmáros G., Marcugini S., Pambianco F.: Transitive \(A_6\)-invariant \(k\)-arcs in \(PG(2, q)\). Des. Codes Cryptogr. 68(1–3), 73–79 (2013). Giulietti M., Korchmáros G., Marcugini S., Pambianco F.: Transitive \(A_6\)-invariant \(k\)-arcs in \(PG(2, q)\). Des. Codes Cryptogr. 68(1–3), 73–79 (2013).
14.
go back to reference Gordon D.M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inf. Theory 28(3), 541–543 (1982). Gordon D.M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inf. Theory 28(3), 541–543 (1982).
16.
go back to reference Higman G.: On the simple group of D. G. Higman and C. C. Sims. Ill. J. Math. 13, 74–80 (1969). Higman G.: On the simple group of D. G. Higman and C. C. Sims. Ill. J. Math. 13, 74–80 (1969).
17.
go back to reference Higman D.G., Sims C.C.: A simple group of order \(44,352,000\). Math. Z. 105, 110–113 (1968). Higman D.G., Sims C.C.: A simple group of order \(44,352,000\). Math. Z. 105, 110–113 (1968).
18.
go back to reference Hill R.: On the largest size of cap in \(S_{5,\,3}\), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54(1973), 378–384 (1974). Hill R.: On the largest size of cap in \(S_{5,\,3}\), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54(1973), 378–384 (1974).
19.
go back to reference Hill R.: A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York (1986). Hill R.: A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York (1986).
20.
go back to reference Hirschfeld J.W.P., Korchmaros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008). Hirschfeld J.W.P., Korchmaros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008).
21.
go back to reference Huffman W.C.: Codes and groups. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, part 2, vol. 2, pp. 1345–1440. North-Holland, Amsterdam (1998). Huffman W.C.: Codes and groups. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, part 2, vol. 2, pp. 1345–1440. North-Holland, Amsterdam (1998).
22.
go back to reference Indaco L., Korchmáros G.: 42-arcs in \(PG(2, q)\) left invariant by \(PSL(2,7)\). Des. Codes Cryptogr. 64(1–2), 33–46 (2012). Indaco L., Korchmáros G.: 42-arcs in \(PG(2, q)\) left invariant by \(PSL(2,7)\). Des. Codes Cryptogr. 64(1–2), 33–46 (2012).
23.
go back to reference Key J.D.: Permutation decoding for codes from designs, finite geometries and graphs. In: Crnkovič D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics. NATO Science for Peace and Security Series D: Information and Communication Security, vol. 29, pp. 172–201. IOS, Amsterdam (2011). Key J.D.: Permutation decoding for codes from designs, finite geometries and graphs. In: Crnkovič D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics. NATO Science for Peace and Security Series D: Information and Communication Security, vol. 29, pp. 172–201. IOS, Amsterdam (2011).
24.
go back to reference Key J.D., McDonough T.P., Mavron V.C.: Partial permutation decoding for codes from finite planes. Eur. J. Comb. 26(5), 665–682 (2005). Key J.D., McDonough T.P., Mavron V.C.: Partial permutation decoding for codes from finite planes. Eur. J. Comb. 26(5), 665–682 (2005).
25.
go back to reference Key J.D., Moori J., Rodrigues B.G.: Permutation decoding for the binary codes from triangular graphs. Eur. J. Comb. 25(1), 113–123 (2004). Key J.D., Moori J., Rodrigues B.G.: Permutation decoding for the binary codes from triangular graphs. Eur. J. Comb. 25(1), 113–123 (2004).
26.
go back to reference Knapp W., Schaeffer H.-J.: On the codes related to the Higman–Sims graph. Electron. J. Comb. 22(1), P1–P19 (2015). Knapp W., Schaeffer H.-J.: On the codes related to the Higman–Sims graph. Electron. J. Comb. 22(1), P1–P19 (2015).
27.
go back to reference Knapp W., Schmid P.: Codes with prescribed permutation group. J. Algebra 67(2), 415–435 (1980). Knapp W., Schmid P.: Codes with prescribed permutation group. J. Algebra 67(2), 415–435 (1980).
28.
go back to reference Kohnert A.: Constructing two-weight codes with prescribed groups of automorphisms. Discret. Appl. Math. 155(11), 1451–1457 (2007). Kohnert A.: Constructing two-weight codes with prescribed groups of automorphisms. Discret. Appl. Math. 155(11), 1451–1457 (2007).
29.
go back to reference Kohnert A., Wassermann A.: Construction of binary and ternary self-orthogonal linear codes. Discret. Appl. Math. 157(9), 2118–2123 (2009). Kohnert A., Wassermann A.: Construction of binary and ternary self-orthogonal linear codes. Discret. Appl. Math. 157(9), 2118–2123 (2009).
30.
go back to reference Kohnert A., Zwanzger J.: New linear codes with prescribed group of automorphisms found by heuristic search. Adv. Math. Commun. 3(2), 157–166 (2009). Kohnert A., Zwanzger J.: New linear codes with prescribed group of automorphisms found by heuristic search. Adv. Math. Commun. 3(2), 157–166 (2009).
31.
go back to reference Korchmáros G., Pace N.: Infinite family of large complete arcs in \(\text{ PG }(2, q^n)\), with \(q\) odd and \(n>1\) odd. Des. Codes Cryptogr. 55(2–3), 285–296 (2010). Korchmáros G., Pace N.: Infinite family of large complete arcs in \(\text{ PG }(2, q^n)\), with \(q\) odd and \(n>1\) odd. Des. Codes Cryptogr. 55(2–3), 285–296 (2010).
32.
go back to reference Kramer E.S., Mesner D.M.: \(t\)-Designs on hypergraphs. Discret. Math. 15, 263–296 (1976). Kramer E.S., Mesner D.M.: \(t\)-Designs on hypergraphs. Discret. Math. 15, 263–296 (1976).
33.
go back to reference Kroll H.-J., Vincenti R.: PD-sets for the codes related to some classical varieties. Discret. Math. 301(1), 89–105 (2005). Kroll H.-J., Vincenti R.: PD-sets for the codes related to some classical varieties. Discret. Math. 301(1), 89–105 (2005).
34.
go back to reference Kroll H.-J., Vincenti R.: Antiblocking systems and PD-sets. Discret. Math. 308(2–3), 401–407 (2008). Kroll H.-J., Vincenti R.: Antiblocking systems and PD-sets. Discret. Math. 308(2–3), 401–407 (2008).
35.
go back to reference Kroll H.-J., Vincenti R.: PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG(5, 2). Discret. Math. 308(2–3), 408–414 (2008). Kroll H.-J., Vincenti R.: PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG(5, 2). Discret. Math. 308(2–3), 408–414 (2008).
36.
go back to reference MacWilliams F.J.: Permutation decoding of systematic codes. Bell System Tech. J. 43(1), 485–505 (1964). MacWilliams F.J.: Permutation decoding of systematic codes. Bell System Tech. J. 43(1), 485–505 (1964).
37.
go back to reference MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. I. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977). MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. I. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977).
38.
go back to reference MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977). MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. II. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977).
39.
go back to reference Martis M., Bamberg J., Morris S.: An enumeration of certain projective ternary two-weight codes. J. Comb. Des. 24(1), 21–35 (2016). Martis M., Bamberg J., Morris S.: An enumeration of certain projective ternary two-weight codes. J. Comb. Des. 24(1), 21–35 (2016).
40.
go back to reference Pace N.: New ternary linear codes from projectivity groups. Discret. Math. 331, 22–26 (2014). Pace N.: New ternary linear codes from projectivity groups. Discret. Math. 331, 22–26 (2014).
41.
go back to reference Pace N.: On small complete arcs and transitive \(A_5\)-invariant arcs in the projective plane \(PG(2, q)\). J. Comb. Des. 22(10), 425–434 (2014). Pace N.: On small complete arcs and transitive \(A_5\)-invariant arcs in the projective plane \(PG(2, q)\). J. Comb. Des. 22(10), 425–434 (2014).
42.
go back to reference Rodrigues B.G.: Self-orthogonal designs and codes from the symplectic groups \(S_4(3)\) and \(S_4(4)\). Discret. Math. 308(10), 1941–1950 (2008). Rodrigues B.G.: Self-orthogonal designs and codes from the symplectic groups \(S_4(3)\) and \(S_4(4)\). Discret. Math. 308(10), 1941–1950 (2008).
43.
go back to reference Sonnino A.: Transitive PSL(2, 7)-invariant 42-arcs in 3-dimensional projective spaces. Des. Codes Cryptogr. 72(2), 455–463 (2014). Sonnino A.: Transitive PSL(2, 7)-invariant 42-arcs in 3-dimensional projective spaces. Des. Codes Cryptogr. 72(2), 455–463 (2014).
44.
go back to reference Tolhuizen L.M.G.M., van Gils W.J.: A large automorphism group decreases the number of computations in the construction of an optimal encoder/decoder pair for a linear block code. IEEE Trans. Inf. Theory 34(2), 333–338 (1988). Tolhuizen L.M.G.M., van Gils W.J.: A large automorphism group decreases the number of computations in the construction of an optimal encoder/decoder pair for a linear block code. IEEE Trans. Inf. Theory 34(2), 333–338 (1988).
Metadata
Title
On linear codes admitting large automorphism groups
Publication date
23-04-2016
Published in
Designs, Codes and Cryptography / Issue 1/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0207-6

Other articles of this Issue 1/2017

Designs, Codes and Cryptography 1/2017 Go to the issue

Premium Partner