Skip to main content
Top

2016 | OriginalPaper | Chapter

On Liouville Numbers: Yet Another Application of Functional Analysis to Number Theory

Author : Jörn Steuding

Published in: From Arithmetic to Zeta-Functions

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1962, Erdős proved that every real number can be represented as a sum and as a product of two Liouville numbers. This has been generalized by Rieger and Schwarz. In this note we shall give an analysis of these results and their proofs. Moreover, we consider a certain subclass of Liouville numbers and prove similar results for this subclass. Since Wolfgang Schwarz had been very much interested in the history of mathematics, and the author shares this interest, he could not resist to include a few historical remarks (and footnotes) on transcendental numbers and Baire’s category theorem which might be interesting for the reader.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Which he commented with his famous words “omnem rationem transcendunt”.
 
2
This final version appeared in [56]. His proof relies on an application of Rolle’s theorem to the minimal polynomial of ξ.
 
3
Hermite [39, p. 77]; English translation: “In this context, M. Liouville already obtained a remarkable theorem which is object of his work entitled: Sur des classes très-étendus de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébrique, and I also remind that the illustrious geometer was the first to show the proposition which is subject of this research for the case of an equation of second degree and of an equation of biquadratic degree”.
 
4
Who obtained his habilitation and venia legendi in 1877 at the University of Würzburg.
 
5
cf. Lützen [57, p. 514].
 
6
Liouville [56, p. 140]; English translation: “I think I can remember that one finds a theorem of this kind announced in a letter of Goldbach to Euler; however, I would not know whether its proof was ever given”.
 
7
Cantor [15, p. 259]; English translation: “(…) so I found the significant difference between a so-called continuum and the epitome of all kind of real algebraic numbers.”
 
8
It might be interesting to notice that Cantor’s doctorate entitled De aequationibus secundi gradus indeterminatis from 1867 dealed with quadratic forms and was supervised by Ernst Eduard Kummer.
 
9
Which was one of Wolfgang Schwarz’s favourite readings. Theodor Schneider was the thesis advisor of Wolfgang Schwarz; he is famous for solving the seventh Hilbert problem on the transcendence of α β for algebraic β and α ≠ 0, 1 simultaneously with and independently to Aleksandar Gelfond in 1934.
 
10
Erdős [27, p. 59].
 
11
As indicated by his warm-hearted obituary [28].
 
12
Erdős [27, p. 60].
 
13
A set M is said to be dense in a topological space X if every point of X is either an element of M or a limit point of M; a set is called nowhere dense if its closure has no interior points.
 
14
A very recommendable monograph on this topic is the book by Oxtoby [67] studying both subjects simultaneously.
 
15
Actually, Borel’s original proof of the statement that almost all real numbers are normal to any base (in the sense of Lebesgue measure) was based on a strong law of large numbers and faulty; it has been corrected by Cantelli and is now known as the Borel–Cantelli lemma. The first rigorous proof of Borel’s statement about normal numbers is due to Georg Faber [30] and Felix Hausdorff [38], respectively. We refer to Barone and Novikoff [8] for details about the interesting polemic between Borel and Cantor’s pupil Felix Bernstein.
 
16
See Oxtoby’s textbook [67, Chap. 19], for further details.
 
17
Building on previous work by Hugo Steinhaus [78].
 
18
See Volkert [82] for a historical discussion of Weierstrass’ construction and its generalization.
 
19
cf. Ilgauds and Purkert [45, p. 47], resp. Maor [59, p. 55]; English translation: “(…) so I protest against using an infinite quantity as accomplished which is nowhere allowed in mathematics. The infinite is only a façon de parler.” Here the word ‘façon de parler’ can be translated literally as ‘manner of speaking’.
 
20
Dugac [23, p. 317]; English translation: “By the way, there is Baire who was the first in France to use Georg Cantor’s works in a systematic way in exactly the general topology of infinity. A. Denjoy told us that ‘there is no doubt’ and that ‘Cantor’s influence on René Baire was substantial’. In particular when it is about infinity ‘Cantor is present in Baire’s work’. On the contrary ‘Baire himself never appealed to the hypothesis that the real numbers form a well-ordered set. He always believed them to be countable”.
 
21
Deiser [21, p. 494]; English translation: “The nowhere dense ([middle third] Cantor set had already been considered by Cantor in 1883, moreover, one can read his proof of the uncountability of \(\mathbb{R}\), first discussed with Dedekind in a letter, as a proof of the category theorem. However, it was Baire to emphasize the concept”.
 
22
Which is constructed by removing each middle third of the unit interval and all remaining intervals.
 
23
For this and the rather difficult relation between the latter mathematician and Cantor see Laugwitz [53].
 
24
Cavaillès and Noether [19]; English translation: “Now we can think of a number, I will call it η, which lies in the interior of all these intervals; it follows easily that this number η is not contained in any of our sequences, henceforth our assumptions was false”.
 
25
German Mathematicians Association; Cantor was one of the founders of this society in 1890.
 
26
van Vleck [79, p. 189]; in the original the names of Osgood and Baire are written in small capitals as well.
 
27
In the case of Osgood and van Vleck both studied and worked with Felix Klein in Göttingen.
 
28
See Barone and Novikoff [7] for details.
 
29
van Vleck [81, p. 7].
 
30
Scheeffer [69, p. 291]; English translation: “Let P be an arbitrary perfect set which is not dense in any interval, and R an arbitrary countable set. Subtracting a constant a from all elements of P, the values xa form a new set P a . Then one can always determine the constant a in between given bounds such that the set P a contains no value from the set R”. The word ‘Hülfssatz’ is old-fashioned German for a proposition.
 
31
It is remarkable that Bagemihl’s paper [2] was published in the same journal as Erdős’ article [27] on Liouville numbers about a decade earlier; it might be even more remarkable that in this second issue of the Michigan Mathematical Journal there is a paper by Gerald Mac Lane [58] on a conjecture by Erdős and others published on the previous pages. However, taking more than 1500 publications of Erdős and their deep impact into account this might have no meaning at all. Scheeffer’s theorem is also mentioned in the at that time rather influential monograph [76] by Sierpiński.
 
32
The author has learned about Scheeffer’s work and all the other details mentioned above by the blog mathoverflow and the valuable comments of Andres Caicedo on the question entitled ‘A translation of the Cantor set contained in the irrationals’, posted February 22, 2014, and based on Wilman Brito’s book [11].
 
33
Cantor [17, p. 199]; engl. translation: “A sound scholarliness connected with plenty of own thoughts, which with exemplary simplicity, clearness, and elegant language are constituted, are the essential character of his productions. Of his beautiful results, to which he was guided by his brassbound diligence driven investigations, I would like to accent here the proof of the following theorem from No. 4:
“If one knows about a continuous function of one variable that its differential quotient is zero for all values of an interval with exception of those which constitute an arbitrarily given infinite set of first cardinality, then the function is a constant in this interval.”” The words in italics are also in the original in italics.
 
34
Scheeffer [69] uses with ‘Inhalt Null’ (meaning ‘content zero’) another notion introduced by Cantor in place of ‘erster Mächtigkeit’.
 
35
Dugac [23, p. 349]; English translation: “His note does not seem to be very original, in particular since his example had been given 1885 by Ludwig Scheeffer in his treatise in Acta Mathematica (Tome V), and to which I refer to in the last chapter of my thesis. Only the presentation differs and I ask myself whether there could have been a simple coincidence. The note had been communicated by M. Picard after the return from his journey; I could offer to talk to him, however, I had completely forgotten at my last visit; I could talk to him about that another time.” In the author’s opinion there are different interpretations of the notion ‘je me demande s’il peut y avoir là une simple coïncidence’. possible here.
 
36
cf. Weber [84, p. 15]; English translation: “God made natural numbers, all else is the work of man”.
 
37
Hilbert [42, p. 170]; English translation: “No one shall expel us from the paradise that Cantor has created”.
 
38
It might be interesting to notice that his article has the subtitle “Aus einem an Herrn Hilbert gerichteten Briefe”, and that he wrote further “Die Idee (…) verdanke ich Herrn Erhard Schmidt”. meaning that the article contains material from a letter written to Hilbert and that the idea behind is due to Schmidt.
 
39
“Hence, Zermelo rather than Cantor should be regarded as the creator of abstract set theory” wrote Kanamori [48, p. 15].
 
40
The appearing brackets point to publications of the three authors indicating the year and page.
 
41
For a change of thinking credit should be given to, among others, Hausdorff and the Polish school of functional analysts.
 
42
cf. Gray [34, p. 258].
 
43
Another much simpler example provides the middle third Cantor set \(\mathcal{C}\). It is a folklore theorem that every real number can be written as a sum of an integer and two elements of \(\mathcal{C}\).
 
44
Schwarz [72, p. 1]; English translation: “The course is thus a medium between a history of number theory and a report on number-theoretical results. One aim of historical investigations to give orientation could therefore be achieved.” The boldfaced words are as in the original.
 
Literature
3.
go back to reference F. Bagemihl, W. Seidel, A general principle involving Baire category, with applications to function theory and other fields. Proc. Natl. Acad. Sci. USA 39, 1068–1075 (1953)MathSciNetCrossRefMATH F. Bagemihl, W. Seidel, A general principle involving Baire category, with applications to function theory and other fields. Proc. Natl. Acad. Sci. USA 39, 1068–1075 (1953)MathSciNetCrossRefMATH
4.
go back to reference F. Bagemihl, P. Erdős, W. Seidel, Sur quelques propriétés frontières des fonctions holomorphes définies par certains produits dans le cercle-unité. Ann. Sci. Éc. Norm. Super. 70, 135–147 (1953) F. Bagemihl, P. Erdős, W. Seidel, Sur quelques propriétés frontières des fonctions holomorphes définies par certains produits dans le cercle-unité. Ann. Sci. Éc. Norm. Super. 70, 135–147 (1953)
5.
go back to reference R.L. Baire, Sur les fonctions de variables réelles. Ann. di Mat. Pura ed applicata 3, 1–123 (1899)CrossRefMATH R.L. Baire, Sur les fonctions de variables réelles. Ann. di Mat. Pura ed applicata 3, 1–123 (1899)CrossRefMATH
6.
go back to reference S. Banach, Über die Baire’sche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)MATH S. Banach, Über die Baire’sche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)MATH
7.
go back to reference J. Barone, A. Novikoff, The Borel law of normal numbers, the Borel zero-one law, and the work of van Vleck. Hist. Math. 4, 43–65 (1977)MathSciNetCrossRefMATH J. Barone, A. Novikoff, The Borel law of normal numbers, the Borel zero-one law, and the work of van Vleck. Hist. Math. 4, 43–65 (1977)MathSciNetCrossRefMATH
8.
go back to reference J. Barone, A. Novikoff, A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I. Arch. Hist. Exact Sci. 18, 123–190 (1978)MathSciNetMATH J. Barone, A. Novikoff, A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I. Arch. Hist. Exact Sci. 18, 123–190 (1978)MathSciNetMATH
9.
go back to reference C.E. Blair, The Baire category theorem implies the principle of dependent choices. Bull. Acad. Polon. Sci. 25, 933–934 (1977)MathSciNetMATH C.E. Blair, The Baire category theorem implies the principle of dependent choices. Bull. Acad. Polon. Sci. 25, 933–934 (1977)MathSciNetMATH
10.
go back to reference É. Borel, Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Matematico di Palermo 27, 247–271 (1909)CrossRefMATH É. Borel, Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Matematico di Palermo 27, 247–271 (1909)CrossRefMATH
11.
go back to reference W. Brito, El Teorema de Categoría de Baire y aplicaciones (Universidad de los Andes, Venezuela, 2011) W. Brito, El Teorema de Categoría de Baire y aplicaciones (Universidad de los Andes, Venezuela, 2011)
12.
14.
go back to reference E.B. Burger, R. Tubbs, Making Transcendence Transparent: An Intuitive Approach to Classical Transcendental Number Theory (Springer, New York, 2004)CrossRefMATH E.B. Burger, R. Tubbs, Making Transcendence Transparent: An Intuitive Approach to Classical Transcendental Number Theory (Springer, New York, 2004)CrossRefMATH
15.
go back to reference G. Cantor, Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. J. Reine Angew. Math. LXXVII, 258–263 (1873) G. Cantor, Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. J. Reine Angew. Math. LXXVII, 258–263 (1873)
17.
go back to reference G. Cantor, Ludwig Scheffer (1859–1885). Necrolog. Bibl. Math. 197–199 (1885) G. Cantor, Ludwig Scheffer (1859–1885). Necrolog. Bibl. Math. 197–199 (1885)
18.
go back to reference G. Cantor, Ueber eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1892)MATH G. Cantor, Ueber eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der Deutschen Mathematiker-Vereinigung 1, 75–78 (1892)MATH
19.
go back to reference J. Cavaillès, E. Noether, Briefwechsel Cantor-Dedekind. Actualités Scientifiques et Industrielles, vol. 518 (Hermann, Paris, 1937) J. Cavaillès, E. Noether, Briefwechsel Cantor-Dedekind. Actualités Scientifiques et Industrielles, vol. 518 (Hermann, Paris, 1937)
20.
21.
go back to reference O. Deiser, Relle Zahlen (Springer, Berlin, 2007) O. Deiser, Relle Zahlen (Springer, Berlin, 2007)
22.
24.
25.
28.
go back to reference P. Erdős, Some personal and mathematical reminiscences of Kurt Mahler. Aust. Math. Soc. Gaz. 16, 1–2 (1989)MathSciNetMATH P. Erdős, Some personal and mathematical reminiscences of Kurt Mahler. Aust. Math. Soc. Gaz. 16, 1–2 (1989)MathSciNetMATH
29.
go back to reference L. Euler, Introduction to analysis of the infinite. Book I, translated by J.D. Blanton (Springer, New York, 1988) L. Euler, Introduction to analysis of the infinite. Book I, translated by J.D. Blanton (Springer, New York, 1988)
30.
go back to reference G. Faber, Über stetige Funktionen. (Zweite Abhandlung). Math. Ann. 69, 372–443 (1910) G. Faber, Über stetige Funktionen. (Zweite Abhandlung). Math. Ann. 69, 372–443 (1910)
31.
go back to reference H. Gispert, La théorie des ensembles en France avant la crise de 1905: Baire, Borel, Lebesgue … et tous les autres. Rev. Hist. Math. 1, 39–81 (1995)MathSciNet H. Gispert, La théorie des ensembles en France avant la crise de 1905: Baire, Borel, Lebesgue et tous les autres. Rev. Hist. Math. 1, 39–81 (1995)MathSciNet
32.
go back to reference D. Gravé, Sur les lignes composées de parties rectilignes. C. R. Acad. Sci. Paris 127, 1005–1007 (1898) D. Gravé, Sur les lignes composées de parties rectilignes. C. R. Acad. Sci. Paris 127, 1005–1007 (1898)
34.
go back to reference J. Gray, Plato’s Ghost (Princeton University Press, Princeton, 2008)MATH J. Gray, Plato’s Ghost (Princeton University Press, Princeton, 2008)MATH
36.
go back to reference A. Harnack, Die Elemente der Differential- und Integralrechnung. Zur Einführung in das Studium dargestellt (Leipzig, Teubner, 1881) A. Harnack, Die Elemente der Differential- und Integralrechnung. Zur Einführung in das Studium dargestellt (Leipzig, Teubner, 1881)
37.
go back to reference S. Hartman, Sur une condition supplémentaire dans les approximations diophantiques. Colloq. Math. 2, 48–51 (1949)MATH S. Hartman, Sur une condition supplémentaire dans les approximations diophantiques. Colloq. Math. 2, 48–51 (1949)MATH
38.
go back to reference F. Hausdorff, Grundzüge der Mengenlehre (Veit & Co, Leipzig, 1914)MATH F. Hausdorff, Grundzüge der Mengenlehre (Veit & Co, Leipzig, 1914)MATH
39.
go back to reference C. Hermite, Sur la fonction exponentielle. C. R. Acad. Sci. Paris 77, 18–24, 74–79, 226–233, 285–293 (1873) C. Hermite, Sur la fonction exponentielle. C. R. Acad. Sci. Paris 77, 18–24, 74–79, 226–233, 285–293 (1873)
40.
41.
go back to reference I.N. Herstein, I. Kaplansky, Matters Mathematical (Harper & Row, New York, 1974); reprinted by Chelsea 1978 I.N. Herstein, I. Kaplansky, Matters Mathematical (Harper & Row, New York, 1974); reprinted by Chelsea 1978
44.
go back to reference A. Hurwitz, Ueber die Entwickelung der allgemeinen Theorie der analytischen Functionen in neuerer Zeit. Verh. Intern. Math. Congr. 1, 91–112 (1897) A. Hurwitz, Ueber die Entwickelung der allgemeinen Theorie der analytischen Functionen in neuerer Zeit. Verh. Intern. Math. Congr. 1, 91–112 (1897)
45.
go back to reference H.J. Ilgauds, W. Purkert, Georg Cantor (Birkhäuser, Basel, 1987)MATH H.J. Ilgauds, W. Purkert, Georg Cantor (Birkhäuser, Basel, 1987)MATH
46.
47.
48.
go back to reference A. Kanamori, Set theory from Cantor to Cohen, in Sets and Extensions in the Twentieth Century, ed. by D.M. Gabbay et al. Handbook of the History of Logic, vol. 6 (Elsevier, Boston, 2012), pp. 1–71 A. Kanamori, Set theory from Cantor to Cohen, in Sets and Extensions in the Twentieth Century, ed. by D.M. Gabbay et al. Handbook of the History of Logic, vol. 6 (Elsevier, Boston, 2012), pp. 1–71
49.
go back to reference A.J. Kempner, On transcendental numbers. Am. M.S. Bull. 22, 284–285 (1916) A.J. Kempner, On transcendental numbers. Am. M.S. Bull. 22, 284–285 (1916)
50.
go back to reference E. Knobloch, Beyond Cartesian limits: Leibniz’s passage from algebraic to ‘transcendental’ mathematics. Hist. Math. 33, 113–131 (2006)MathSciNetCrossRefMATH E. Knobloch, Beyond Cartesian limits: Leibniz’s passage from algebraic to ‘transcendental’ mathematics. Hist. Math. 33, 113–131 (2006)MathSciNetCrossRefMATH
51.
go back to reference J.F. Koksma, Sur l’approximation des nombres irrationnels sous une condition supplementaire. Simon Stevin 28, 199–202 (1951)MathSciNetMATH J.F. Koksma, Sur l’approximation des nombres irrationnels sous une condition supplementaire. Simon Stevin 28, 199–202 (1951)MathSciNetMATH
52.
go back to reference L. Kronecker, Die Periodensysteme von Funktionen reeller Variablen. Ber. d. K. Preuß. Ak. d. Wiss. Berl. 1071–1080 (1884) L. Kronecker, Die Periodensysteme von Funktionen reeller Variablen. Ber. d. K. Preuß. Ak. d. Wiss. Berl. 1071–1080 (1884)
53.
go back to reference D. Laugwitz, Debates about infinity in mathematics around 1890: the Cantor-Veronese controversy, its origins and its outcome. NTM (N.S.) 10, 102–126 (2002) D. Laugwitz, Debates about infinity in mathematics around 1890: the Cantor-Veronese controversy, its origins and its outcome. NTM (N.S.) 10, 102–126 (2002)
54.
go back to reference J. Liouville, Remarques relatives 1∘ à des classes très-étendues de quantités dont la valeur n’est ni rationelle ni même réductible à des irrationnelles algébriques; 2∘ à un passage du livre des Principes où Newton calcule l’action exercée par une sphére sur un point extérieur. C.R. Acad. Sci. Paris 18, 883–885 (1844) J. Liouville, Remarques relatives 1 à des classes très-étendues de quantités dont la valeur n’est ni rationelle ni même réductible à des irrationnelles algébriques; 2 à un passage du livre des Principes où Newton calcule l’action exercée par une sphére sur un point extérieur. C.R. Acad. Sci. Paris 18, 883–885 (1844)
55.
go back to reference J. Liouville, Nouvelle démonstration d’un théorème sur les irrationnelles algébriques. C.R. Acad. Sci. Paris 18, 910–911 (1844) J. Liouville, Nouvelle démonstration d’un théorème sur les irrationnelles algébriques. C.R. Acad. Sci. Paris 18, 910–911 (1844)
56.
go back to reference J. Liouville, Sur des classes très-étendus de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébrique. Liouville J. 16, 133–142 (1851) J. Liouville, Sur des classes très-étendus de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébrique. Liouville J. 16, 133–142 (1851)
57.
go back to reference J. Lützen, Joseph Liouville, 1809–1882: Master of Pure and Applied Mathematics (Springer, Berlin, 1990)CrossRefMATH J. Lützen, Joseph Liouville, 1809–1882: Master of Pure and Applied Mathematics (Springer, Berlin, 1990)CrossRefMATH
60.
go back to reference S. Mazurkiewicz, Sur les fonctions non derivables. Stud. Math. 3, 92–94 (1931)MATH S. Mazurkiewicz, Sur les fonctions non derivables. Stud. Math. 3, 92–94 (1931)MATH
62.
go back to reference G.H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence (Springer, New York, 1982)CrossRefMATH G.H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence (Springer, New York, 1982)CrossRefMATH
63.
go back to reference L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion. Math. Proc. Camb. Philos. Soc. 136, 139–165 (2004)MathSciNetCrossRefMATH L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion. Math. Proc. Camb. Philos. Soc. 136, 139–165 (2004)MathSciNetCrossRefMATH
64.
go back to reference W.F. Osgood, Ueber die ungleichmässige Convergenz und die gliedweise Integration der Reihen. Gött. Nachr. 288–291 (1896) W.F. Osgood, Ueber die ungleichmässige Convergenz und die gliedweise Integration der Reihen. Gött. Nachr. 288–291 (1896)
66.
go back to reference W.F. Osgood, On the existence of the Green’s function for the most general simply connected plane region. Trans. A.M.S. 1, 310–314 (1900) W.F. Osgood, On the existence of the Green’s function for the most general simply connected plane region. Trans. A.M.S. 1, 310–314 (1900)
69.
go back to reference L. Scheeffer, Zur Theorie der stetigen Funktionen einer reellen Veränderlichen. Acta Math. 5, 183–194, 279–296 (1884)MathSciNetCrossRef L. Scheeffer, Zur Theorie der stetigen Funktionen einer reellen Veränderlichen. Acta Math. 5, 183–194, 279–296 (1884)MathSciNetCrossRef
70.
go back to reference T. Schneider, Einführung in die Transzendenten Zahlen, 2nd edn. (Springer, New York, 1957)CrossRefMATH T. Schneider, Einführung in die Transzendenten Zahlen, 2nd edn. (Springer, New York, 1957)CrossRefMATH
71.
73.
75.
go back to reference W. Sierpiński, Sur la dualité entre la première categorie et la mesure nulle. Fund. Math. 22, 276–280 (1934)MATH W. Sierpiński, Sur la dualité entre la première categorie et la mesure nulle. Fund. Math. 22, 276–280 (1934)MATH
76.
go back to reference W. Sierpiński, General Topology (University of Toronto Press, Toronto, 1952)MATH W. Sierpiński, General Topology (University of Toronto Press, Toronto, 1952)MATH
78.
go back to reference H. Steinhaus, Anwendungen der Funktionalanalysis auf einige Fragen der reellen Funktionentheorie. Stud. Math. 1, 51–81 (1929)MATH H. Steinhaus, Anwendungen der Funktionalanalysis auf einige Fragen der reellen Funktionentheorie. Stud. Math. 1, 51–81 (1929)MATH
79.
go back to reference E.B. van Vleck, A proof of some theorems on pointwise discontinuous functions. Trans. A.M.S. 8, 189–204 (1907) E.B. van Vleck, A proof of some theorems on pointwise discontinuous functions. Trans. A.M.S. 8, 189–204 (1907)
80.
go back to reference E.B. van Vleck, On non-measurable sets of points, with an example. Trans. A.M.S. 9, 237–244 (1908) E.B. van Vleck, On non-measurable sets of points, with an example. Trans. A.M.S. 9, 237–244 (1908)
81.
go back to reference E.B. van Vleck, Current tendencies of mathematical research. Bull. A.M.S. 23, 1–13 (1916) E.B. van Vleck, Current tendencies of mathematical research. Bull. A.M.S. 23, 1–13 (1916)
82.
go back to reference K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefMATH K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefMATH
83.
go back to reference V. Volterra, Alcune osservazioni sulle funzioni punteggiate discontinue. Giornale di Matematiche 19, 76–86 (1881) V. Volterra, Alcune osservazioni sulle funzioni punteggiate discontinue. Giornale di Matematiche 19, 76–86 (1881)
Metadata
Title
On Liouville Numbers: Yet Another Application of Functional Analysis to Number Theory
Author
Jörn Steuding
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-28203-9_29

Premium Partner