Skip to main content
Top
Published in: Computational Mechanics 6/2016

01-06-2016 | Original Paper

On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

Authors: Tiago J. Grilo, Ivaylo N. Vladimirov, Robertt A. F. Valente, Stefanie Reese

Published in: Computational Mechanics | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Papadopoulos P, Lu J (2001) On the formulation and numerical solution of problems in anisotropic finite plasticity. Comput Methods Appl Mech Eng 190:4889–4910CrossRefMATH Papadopoulos P, Lu J (2001) On the formulation and numerical solution of problems in anisotropic finite plasticity. Comput Methods Appl Mech Eng 190:4889–4910CrossRefMATH
2.
go back to reference Löblein J, Schröder J, Gruttmann F (2003) Application of generalized measures to an orthotropic finite elasto-plasticity model. Comput Mater Sci 28:696–703CrossRef Löblein J, Schröder J, Gruttmann F (2003) Application of generalized measures to an orthotropic finite elasto-plasticity model. Comput Mater Sci 28:696–703CrossRef
3.
go back to reference Miehe C, Apel N (2004) Anisotropic elastic-plastic analysis of shells at large strains. A comparison of multiplicative and additive approaches to enhanced finite element design and constitutive modelling. Int J Numer Meth Eng 61:2067–2113MathSciNetCrossRefMATH Miehe C, Apel N (2004) Anisotropic elastic-plastic analysis of shells at large strains. A comparison of multiplicative and additive approaches to enhanced finite element design and constitutive modelling. Int J Numer Meth Eng 61:2067–2113MathSciNetCrossRefMATH
4.
go back to reference Ulz MH (2009) A Green-Naghdi approach to finite anisotropic rate-independent and rate-dependent thermo-plasticity in logarithmic Lagrangean strain-entropy space. Comput Methods Appl Mech Eng 198:3262–3277MathSciNetCrossRefMATH Ulz MH (2009) A Green-Naghdi approach to finite anisotropic rate-independent and rate-dependent thermo-plasticity in logarithmic Lagrangean strain-entropy space. Comput Methods Appl Mech Eng 198:3262–3277MathSciNetCrossRefMATH
5.
go back to reference Menzel A, Steinmann P (2003) On the spatial formulation of anisotropic multiplicative elasto-plasticity. Comput Methods Appl Mech Eng 192:3431–3470CrossRefMATH Menzel A, Steinmann P (2003) On the spatial formulation of anisotropic multiplicative elasto-plasticity. Comput Methods Appl Mech Eng 192:3431–3470CrossRefMATH
6.
go back to reference Sansour C, Karšaj I, Sorić J (2006) A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling. Int J Plast 22:2346–2365CrossRefMATH Sansour C, Karšaj I, Sorić J (2006) A formulation of anisotropic continuum elastoplasticity at finite strains. Part I: modelling. Int J Plast 22:2346–2365CrossRefMATH
7.
go back to reference Vladimirov IN, Pietryga MP, Reese S (2010) Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int J Plast 26:659–687CrossRefMATH Vladimirov IN, Pietryga MP, Reese S (2010) Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int J Plast 26:659–687CrossRefMATH
8.
go back to reference Shi B, Mosler J (2013) On the macroscopic description of the yield surface evolution by means of distortional hardening models: Application to magnesium. Int J Plast 44:1–22CrossRef Shi B, Mosler J (2013) On the macroscopic description of the yield surface evolution by means of distortional hardening models: Application to magnesium. Int J Plast 44:1–22CrossRef
9.
go back to reference Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20:2027–2045CrossRefMATH Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20:2027–2045CrossRefMATH
10.
go back to reference Grilo TJ (2015) Development of computational anisotropic hypoelastic—and hyperelastic-based models including nonlinear kinematic hardening. PhD. Thesis, University of Aveiro Grilo TJ (2015) Development of computational anisotropic hypoelastic—and hyperelastic-based models including nonlinear kinematic hardening. PhD. Thesis, University of Aveiro
11.
go back to reference Dettmer W, Reese S (2004) On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. Comput Methods Appl Mech Eng 193:87–116CrossRefMATH Dettmer W, Reese S (2004) On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. Comput Methods Appl Mech Eng 193:87–116CrossRefMATH
12.
go back to reference Lührs G, Hartmann S, Haupt P (1997) On the numerical treatment of finite deformations in elastoviscoplasticity. Comput Methods Appl Mech Eng 144:1–21MathSciNetCrossRefMATH Lührs G, Hartmann S, Haupt P (1997) On the numerical treatment of finite deformations in elastoviscoplasticity. Comput Methods Appl Mech Eng 144:1–21MathSciNetCrossRefMATH
13.
go back to reference Tsakmakis C (1996) Kinematic hardening rules in finite plasticity. Part I: a constitutive approach. Contin Mech Thermodyn 8:215–231CrossRefMATH Tsakmakis C (1996) Kinematic hardening rules in finite plasticity. Part I: a constitutive approach. Contin Mech Thermodyn 8:215–231CrossRefMATH
14.
go back to reference Tsakmakis C, Willuweit A (2004) A comparative study of kinematic hardening rules at finite deformations. Int J Nonlin Mech 39:539–554CrossRefMATH Tsakmakis C, Willuweit A (2004) A comparative study of kinematic hardening rules at finite deformations. Int J Nonlin Mech 39:539–554CrossRefMATH
15.
go back to reference Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial bauschinger effect. Central Electricity Generating Board Report, Berkeley Nuclear Laboratories, RD/B/N 731 Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial bauschinger effect. Central Electricity Generating Board Report, Berkeley Nuclear Laboratories, RD/B/N 731
16.
go back to reference Freund M, Shutov AV, Ihlemann J (2012) Simulation of distortional hardening by generalizing a uniaxial model of finite strain viscoplasticity. Int J Plast 36:113–129CrossRef Freund M, Shutov AV, Ihlemann J (2012) Simulation of distortional hardening by generalizing a uniaxial model of finite strain viscoplasticity. Int J Plast 36:113–129CrossRef
17.
go back to reference Lion A (2000) Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int J Plast 16:469–494CrossRefMATH Lion A (2000) Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int J Plast 16:469–494CrossRefMATH
18.
go back to reference Vladimirov IN, Pietryga MP, Reese S (2008) On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int J Numer Meth Eng 75:1–28CrossRefMATH Vladimirov IN, Pietryga MP, Reese S (2008) On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int J Numer Meth Eng 75:1–28CrossRefMATH
19.
go back to reference Chaboche JL, Rousselier G (1983) On the plastic and viscoplastic constitutive equations—Part I: rules development with internal variable concept. J Press Vess Technol 105:153–158CrossRef Chaboche JL, Rousselier G (1983) On the plastic and viscoplastic constitutive equations—Part I: rules development with internal variable concept. J Press Vess Technol 105:153–158CrossRef
20.
go back to reference Wallin M, Ristinmaa M (2005) Deformation gradient based kinematic hardening model. Int J Plast 21:2025–2050CrossRefMATH Wallin M, Ristinmaa M (2005) Deformation gradient based kinematic hardening model. Int J Plast 21:2025–2050CrossRefMATH
21.
go back to reference Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039CrossRefMATH Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039CrossRefMATH
22.
go back to reference Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134:223–240MathSciNetCrossRefMATH Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134:223–240MathSciNetCrossRefMATH
23.
go back to reference NUMISHEET (1993) Numisheet’93 benchmark problem. In: Makinouchi A, Nakamachi E, Onate E, Wagoner RH (eds) Proceedings of 2nd international conference on numerical simulation of 3D sheet metal forming processes—verification of simulation with experiment, Isehara NUMISHEET (1993) Numisheet’93 benchmark problem. In: Makinouchi A, Nakamachi E, Onate E, Wagoner RH (eds) Proceedings of 2nd international conference on numerical simulation of 3D sheet metal forming processes—verification of simulation with experiment, Isehara
24.
go back to reference Lee JW, Lee MG, Barlat F (2012) Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. Int J Plast 29:13–41CrossRef Lee JW, Lee MG, Barlat F (2012) Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. Int J Plast 29:13–41CrossRef
25.
go back to reference Grilo TJ, Souto N, Valente RAF, Andrade-Campos A, Thuillier S, Alves de Sousa RJ (2013) On the development and computational implementation of complex constitutive models and parameters’ identification procedures. Key Eng Mat 554–557:936–948CrossRef Grilo TJ, Souto N, Valente RAF, Andrade-Campos A, Thuillier S, Alves de Sousa RJ (2013) On the development and computational implementation of complex constitutive models and parameters’ identification procedures. Key Eng Mat 554–557:936–948CrossRef
26.
go back to reference Carsley JE, Xia C, Yang L, Stoughton TB, Xu S, Hartfield-Wünsch SE, Li J, Chen Z (2013) Benchmark 2—springback of a draw / re-draw panel: Part A: benchmark description. AIP Conf Proc 1567:177–182CrossRef Carsley JE, Xia C, Yang L, Stoughton TB, Xu S, Hartfield-Wünsch SE, Li J, Chen Z (2013) Benchmark 2—springback of a draw / re-draw panel: Part A: benchmark description. AIP Conf Proc 1567:177–182CrossRef
27.
go back to reference Stoughton TB, Shi MF, Huang G, Yoon JW (2013) Material characterizations for benchmark 1 and benchmark 2. AIP Conf Proc 1567:9–14CrossRef Stoughton TB, Shi MF, Huang G, Yoon JW (2013) Material characterizations for benchmark 1 and benchmark 2. AIP Conf Proc 1567:9–14CrossRef
Metadata
Title
On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming
Authors
Tiago J. Grilo
Ivaylo N. Vladimirov
Robertt A. F. Valente
Stefanie Reese
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2016
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1270-6

Other articles of this Issue 6/2016

Computational Mechanics 6/2016 Go to the issue