Skip to main content
Top

2024 | OriginalPaper | Chapter

On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems

Authors : Oliver Ludger Preuß, Jeroen Rook, Heike Trautmann

Published in: Applications of Evolutionary Computation

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The complexity of Multi-Objective (MO) continuous optimisation problems arises from a combination of different characteristics, such as the level of multi-modality. Earlier studies revealed that there is a conflict between solver convergence in objective space and solution set diversity in the decision space, which is especially important in the multi-modal setting. We build on top of this observation and investigate this trade-off in a multi-objective manner by using multi-objective automated algorithm configuration (MO-AAC) on evolutionary multi-objective algorithms (EMOA). Our results show that MO-AAC is able to find configurations that outperform the default configuration as well as configurations found by single-objective AAC in regards to objective space convergence and diversity in decision space, leading to new recommendations for high-performing default settings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Afsar, B., Fieldsend, J.E., Guerreiro, A.P., Miettinen, K., Rojas Gonzalez, S., Sato, H.: Many-Objective Quality Measures. In: Brockhoff, D., Emmerich, M., Naujoks, B., Purshouse, R. (eds.) Many-Criteria Optimization and Decision Analysis. Natural Computing Series, pp. 113–148. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25263-1_5 Afsar, B., Fieldsend, J.E., Guerreiro, A.P., Miettinen, K., Rojas Gonzalez, S., Sato, H.: Many-Objective Quality Measures. In: Brockhoff, D., Emmerich, M., Naujoks, B., Purshouse, R. (eds.) Many-Criteria Optimization and Decision Analysis. Natural Computing Series, pp. 113–148. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-25263-1_​5
7.
go back to reference Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for solving multi-objective problems. 2nd ed. Genetic and Evolutionary Computation Series. Springer, New York (2007). isbn: 978-0-387-36797-2 Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for solving multi-objective problems. 2nd ed. Genetic and Evolutionary Computation Series. Springer, New York (2007). isbn: 978-0-387-36797-2
11.
19.
go back to reference Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. thesis. Princeton University (1963) Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. thesis. Princeton University (1963)
21.
go back to reference Rook, J., et al.: MO-SMAC: multi-objective sequential model-based algorithm configuration. In: Manuscript Under Review, pp. 1–8 (2024) Rook, J., et al.: MO-SMAC: multi-objective sequential model-based algorithm configuration. In: Manuscript Under Review, pp. 1–8 (2024)
22.
go back to reference Rook, J., et al.: On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 356–359. ACM, Boston, July 2022. isbn: 978-1-4503-9268-6. https://doi.org/10.1145/3520304.3528998 Rook, J., et al.: On the potential of automated algorithm configuration on multi-modal multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 356–359. ACM, Boston, July 2022. isbn: 978-1-4503-9268-6. https://​doi.​org/​10.​1145/​3520304.​3528998
23.
go back to reference Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through multimodal multi-objective landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference. Boston Massachusetts: ACM, July 2022, pp. 592–600. isbn: 978-1-4503-9237-2. https://doi.org/10.1145/3512290.3528793 Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through multimodal multi-objective landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference. Boston Massachusetts: ACM, July 2022, pp. 592–600. isbn: 978-1-4503-9237-2. https://​doi.​org/​10.​1145/​3512290.​3528793
24.
go back to reference Schäpermeier, L., et al.: Peak-a-boo! generating multi-objective multiple peaks benchmark problems with precise pareto sets. In: Evolutionary Multi-Criterion Optimization, vol. 13970, pp. 291–304. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27250-9. isbn:978-3-031-27250-9_21 Schäpermeier, L., et al.: Peak-a-boo! generating multi-objective multiple peaks benchmark problems with precise pareto sets. In: Evolutionary Multi-Criterion Optimization, vol. 13970, pp. 291–304. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-27250-9. isbn:978-3-031-27250-9_21
27.
go back to reference Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. Dublin Ireland: ACM, July 2011, pp. 641–648. isbn: 978-1-4503-0557-0. https://doi.org/10.1145/2001576.2001665 Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. Dublin Ireland: ACM, July 2011, pp. 641–648. isbn: 978-1-4503-0557-0. https://​doi.​org/​10.​1145/​2001576.​2001665
28.
Metadata
Title
On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
Authors
Oliver Ludger Preuß
Jeroen Rook
Heike Trautmann
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56852-7_20

Premium Partner