Skip to main content
Top
Published in: Designs, Codes and Cryptography 9/2023

27-05-2023

On the security of functional encryption in the generic group model

Authors: Hyung Tae Lee, Jae Hong Seo

Published in: Designs, Codes and Cryptography | Issue 9/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the context of functional encryption (FE), a weak security notion called selective security, which enforces the adversary to complete a challenge prior to seeing the system parameters, is used to argue in favor of the security of proposed cryptosystems. These results are often considered as an intermediate step to design adaptively secure cryptosystems. In fact, selectively secure FE schemes play a role of more than an intermediate step in many cases. If we restrict our attention to group-based constructions, it is not surprising to find several selectively secure FE schemes such that no successful adaptive adversary is found yet and/or it is also believed that no adaptive adversary will be found in practice even in the future. In this paper, we aim at clarifying these beliefs rigorously in the ideal model, called generic group model (GGM). First, we refine the definitions of the GGM and the security notions for FE scheme for clarification. Second, we formalize a group-based FE scheme with some conditions and then show that for any group-based FE scheme satisfying these conditions we can reduce from its selective security in the standard model to adaptive security in the GGM, in particular, regardless of the functionality of FE schemes. Our reduction is applicable to many existing selectively secure FE schemes with various functionalities, e.g., the FE scheme for quadratic functions of Baltico et al. (CRYPTO, 2017), the predicate encryption scheme of Katz et al. (J Cryptol in 26:191–224, 2013), and Boneh and Boyen’s identity-based encryption scheme (EUROCRYPT 2004).
Footnotes
1
Contrary to the exponential reduction leverage [15], our reduction works in polynomial-time.
 
2
We follow Shoup’s representation of the GGM. Note that there are several papers following Maurer’s representation of the GGM and both representations are in fact equivalent [39, 46].
 
3
We can further generalize this model by hiding the order of the group, but the model in which the group order is known is sufficient for our purposes.
 
4
We assume that \({\mathcal {M}}_{\texttt {ENC}}\) is announced to the adversary at the very beginning of the interaction.
 
5
To the best of our knowledge, almost all elliptic curve based FE schemes generate public parameters with sufficient entropy for super-polynomial uncertainty.
 
6
Note that since we separate the group order from the group description, \(\mathbb {Z}_q\) is a parameter-independent message space.
 
7
Even before fixing the group description, we can predetermine the message space that will be mapped to group elements.
 
8
In contrast to usual definitions for indistinguishability, we have modified \({\mathcal {A}}\) to begin with querying \(\textsf {mpk}\), in order to make the definition fit better to our generalization of interactions in the GGM, which will be presented in Lemma 2.
 
9
\(M_0^*\) and \(M_1^*\) may be the same with respect to FE schemes. For example, \(M_0^*=M_1^*\) in the selective-id security of IBE scheme [15].
 
10
Here, all the mentioned ‘polynomial’ means a polynomial in \(\log p\), where p is the order of the base groups \(\mathbb {G}_1,\mathbb {G}_2\), and \(\mathbb {G}_T\).
 
11
A random function is an ideal object that cannot be expressed as a closed-form expression. We manage \({{\widehat{\sigma }}}_i\) like a random oracle in the sense that for each evaluation, we choose a random function value and keep it in some internal list to reuse for the same input. Note that \({{\widehat{\sigma }}}_i\) is used only by the challenger in the poly-faking lemma.
 
12
That is, the statistical distance of two distributions is negligible in \(\log p\).
 
Literature
1.
go back to reference Abdalla M., Bourse F., De Caro A.: Simple functional encryption schemes for inner products. In: PKC 2015. LNCS vol. 9020, 733–751 (2015). Abdalla M., Bourse F., De Caro A.: Simple functional encryption schemes for inner products. In: PKC 2015. LNCS vol. 9020, 733–751 (2015).
2.
go back to reference Abdolmaleki B., Baghery K., Lipmaa H., Zajac M.: A subversion-resistant SNARK. In: ASIACRYPT 2017 Part III. LNCS vol. 10626, 3–33 (2017). Abdolmaleki B., Baghery K., Lipmaa H., Zajac M.: A subversion-resistant SNARK. In: ASIACRYPT 2017 Part III. LNCS vol. 10626, 3–33 (2017).
3.
go back to reference Abe M., Fuchsbauer G., Groth J., Haralambiev K., Ohkubo M.: Structure-preserving signatures and commitments to group elements. In: CRYPTO 2010. LNCS vol. 6223, 209–236 (2010). Abe M., Fuchsbauer G., Groth J., Haralambiev K., Ohkubo M.: Structure-preserving signatures and commitments to group elements. In: CRYPTO 2010. LNCS vol. 6223, 209–236 (2010).
4.
go back to reference Agrawal S., Libert B., Stehlé D.: Fully secure functional encryption for inner products, from standard assumptions. In: CRYPTO (3) 2016. LNCS vol. 9816, 333–362 (2016). Agrawal S., Libert B., Stehlé D.: Fully secure functional encryption for inner products, from standard assumptions. In: CRYPTO (3) 2016. LNCS vol. 9816, 333–362 (2016).
5.
go back to reference Albrecht M..R., Bai S., Ducas L.: A subfield lattice attack on overstretched NTRU assumptions-cryptanalysis of some FHE and graded encoding schemes. In: CRYPTO (1) 2016 vol. 9814, 153–178 (2016). Albrecht M..R., Bai S., Ducas L.: A subfield lattice attack on overstretched NTRU assumptions-cryptanalysis of some FHE and graded encoding schemes. In: CRYPTO (1) 2016 vol. 9814, 153–178 (2016).
6.
go back to reference Ambrona M., Barthe G., Schmidt B.: Automated unbounded analysis of cryptographic constructions in the generic group model. In: EUROCRYPT (2) 2016. LNCS vol. 9666, 822–851 (2016). Ambrona M., Barthe G., Schmidt B.: Automated unbounded analysis of cryptographic constructions in the generic group model. In: EUROCRYPT (2) 2016. LNCS vol. 9666, 822–851 (2016).
7.
go back to reference Ambrona M., Barthe G., Gay R., Wee H.: Attribute-based encryption in the generic group model: automated proofs and new constructions. In: ACM CCS 2017, LNCS, pp. 647–664. Springer (2017) Ambrona M., Barthe G., Gay R., Wee H.: Attribute-based encryption in the generic group model: automated proofs and new constructions. In: ACM CCS 2017, LNCS, pp. 647–664. Springer (2017)
8.
go back to reference Ananth P., Brakerski Z., Segev G., Vaikuntanathan V.: From selective to adaptive security in functional encryption. In: CRYPTO (2) 2015. LNCS vol. 9216, 657–677 (2015). Ananth P., Brakerski Z., Segev G., Vaikuntanathan V.: From selective to adaptive security in functional encryption. In: CRYPTO (2) 2015. LNCS vol. 9216, 657–677 (2015).
9.
go back to reference Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfuscation to functional encryption. In: EUROCRYPT (1) 2017, LNCS, vol. 10210, pp. 91–121. Springer (2017) Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfuscation to functional encryption. In: EUROCRYPT (1) 2017, LNCS, vol. 10210, pp. 91–121. Springer (2017)
10.
go back to reference Babai L., Szemeredi E.: On the complexity of matrix group problems. In: FOCS 1984, pp. 229–240 (1984) Babai L., Szemeredi E.: On the complexity of matrix group problems. In: FOCS 1984, pp. 229–240 (1984)
11.
go back to reference Baltico C.E.Z., Catalano D., Fiore D., Gay R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: CRYPTO(1) 2017. LNCS vol. 10401, pp. 67–98 (2017). Baltico C.E.Z., Catalano D., Fiore D., Gay R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: CRYPTO(1) 2017. LNCS vol. 10401, pp. 67–98 (2017).
12.
go back to reference Barthe G., Fagerholm E., Fiore D., Mitchell J..C., Scedrov A., Schmidt B.: Automated analysis of cryptographic assumptions in generic group models. In: CRYPTO (1) 2014. LNCS vol. 8616, 95–112 (2014). Barthe G., Fagerholm E., Fiore D., Mitchell J..C., Scedrov A., Schmidt B.: Automated analysis of cryptographic assumptions in generic group models. In: CRYPTO (1) 2014. LNCS vol. 8616, 95–112 (2014).
13.
go back to reference Bellare M., Fuchsbauer G., Scafuro A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: ASIACRYPT 2016 Part II, LNCS, vol. 10032, pp. 777–804. Springer (2016) Bellare M., Fuchsbauer G., Scafuro A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: ASIACRYPT 2016 Part II, LNCS, vol. 10032, pp. 777–804. Springer (2016)
14.
go back to reference Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993) Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)
15.
go back to reference Boneh D., Boyen X.: Efficient selective-id identity based encryption without random oracles. In: EUROCRYPT 2004. LNCS vol. 3027, 223–238 (2004). Boneh D., Boyen X.: Efficient selective-id identity based encryption without random oracles. In: EUROCRYPT 2004. LNCS vol. 3027, 223–238 (2004).
17.
go back to reference Boneh D., Lipton R.J.: Algorithms for black-box fields and their application to cryptography. In: CRYPTO 1996. LNCS vol. 1109, 283–297 (1996). Boneh D., Lipton R.J.: Algorithms for black-box fields and their application to cryptography. In: CRYPTO 1996. LNCS vol. 1109, 283–297 (1996).
18.
go back to reference Boneh D., Boyen X., Goh E.: Hierarchical identity based encryption with constant size ciphertexts. In: EUROCRYPT 2005. LNCS vol. 3494, 440–456 (2005). Boneh D., Boyen X., Goh E.: Hierarchical identity based encryption with constant size ciphertexts. In: EUROCRYPT 2005. LNCS vol. 3494, 440–456 (2005).
19.
go back to reference Boneh D., Goh E., Nissim K.: Evaluating 2-DNF formulas on ciphertexts. In: TCC 2005, LNCS, vol. 3378. Springer (2005). Boneh D., Goh E., Nissim K.: Evaluating 2-DNF formulas on ciphertexts. In: TCC 2005, LNCS, vol. 3378. Springer (2005).
20.
go back to reference Boneh D., Sahai A., Waters B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012).CrossRef Boneh D., Sahai A., Waters B.: Functional encryption: a new vision for public-key cryptography. Commun. ACM 55(11), 56–64 (2012).CrossRef
21.
go back to reference Boyen X.: The uber-assumption family (invited talk). In: Pairing 2008, LNCS, vol. 5209, 39–56 (2008). Boyen X.: The uber-assumption family (invited talk). In: Pairing 2008, LNCS, vol. 5209, 39–56 (2008).
22.
go back to reference Boyen X., Waters B.: Anonymous hierarchical identity-based encryption (without random oracles). In: CRYPTO 2006. LNCS vol. 4117, 290–307 (2006). Boyen X., Waters B.: Anonymous hierarchical identity-based encryption (without random oracles). In: CRYPTO 2006. LNCS vol. 4117, 290–307 (2006).
23.
go back to reference Boyle E., Chung K.M., Pass R.: On extractability obfuscation. In: TCC 2014. LNCS vol. 8349, 52–73 (2014). Boyle E., Chung K.M., Pass R.: On extractability obfuscation. In: TCC 2014. LNCS vol. 8349, 52–73 (2014).
24.
go back to reference Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. In: EUROCRYPT 2004. LNCS vol. 3027, 207–222 (2004). Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. In: EUROCRYPT 2004. LNCS vol. 3027, 207–222 (2004).
26.
go back to reference Cheon J.H., Han K., Lee C., Ryu H., Stehlé D.: Cryptanalysis of the multilinear map over the integers. In: EUROCRYPT (1) 2015. LNCS vol. 9056, 3–12 (2015). Cheon J.H., Han K., Lee C., Ryu H., Stehlé D.: Cryptanalysis of the multilinear map over the integers. In: EUROCRYPT (1) 2015. LNCS vol. 9056, 3–12 (2015).
27.
go back to reference Cheon J.H., Fouque P..A., Lee C., Minaud B., Ryu H.: Cryptanalysis of the new CLT multilinear map over the integers. In: EUROCRYPT (1) 2016. LNCS vol. 9665, 509–536 (2016). Cheon J.H., Fouque P..A., Lee C., Minaud B., Ryu H.: Cryptanalysis of the new CLT multilinear map over the integers. In: EUROCRYPT (1) 2016. LNCS vol. 9665, 509–536 (2016).
28.
go back to reference Cheon J.H., Hhan M., Kim J., Lee C.: Cryptanalyses of branching program obfuscations over GGH13 multilinear map from the NTRU problem. In: CRYPTO (3) 2018. LNCS vol. 10993, 184–210 (2018). Cheon J.H., Hhan M., Kim J., Lee C.: Cryptanalyses of branching program obfuscations over GGH13 multilinear map from the NTRU problem. In: CRYPTO (3) 2018. LNCS vol. 10993, 184–210 (2018).
29.
go back to reference Coron J.S., Lee M.S., Lepoint T., Tibouchi M.: Cryptanalysis of GGH15 multilinear maps. In: CRYPTO (2) 2016. LNCS vol. 9815, 607–628 (2016). Coron J.S., Lee M.S., Lepoint T., Tibouchi M.: Cryptanalysis of GGH15 multilinear maps. In: CRYPTO (2) 2016. LNCS vol. 9815, 607–628 (2016).
30.
go back to reference ElGamal T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: G.R. Blakely, D. Chaum (eds.) CRYPTO 1984. LNCS vol. 196, 10–18 (1984). ElGamal T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: G.R. Blakely, D. Chaum (eds.) CRYPTO 1984. LNCS vol. 196, 10–18 (1984).
31.
go back to reference Escala A., Herold G., Kiltz E., Ràfols C., Villar J.: An algebraic framework for Diffie–Hellman assumptions. J. Cryptol. 30, 242–288 (2017) Springer.MathSciNetCrossRefMATH Escala A., Herold G., Kiltz E., Ràfols C., Villar J.: An algebraic framework for Diffie–Hellman assumptions. J. Cryptol. 30, 242–288 (2017) Springer.MathSciNetCrossRefMATH
32.
go back to reference Fernando R., Rasmussen P.M.R., Sahai A.: Preventing CLT attacks on obfuscation with linear overhead. In: ASIACRYPT (3) 2017. LNCS vol. 10626, 242–271 (2017). Fernando R., Rasmussen P.M.R., Sahai A.: Preventing CLT attacks on obfuscation with linear overhead. In: ASIACRYPT (3) 2017. LNCS vol. 10626, 242–271 (2017).
33.
go back to reference Fouque P.A., Joux A., Tibouchi M.: Injective encodings to elliptic curves. In: ACISP 2013. LNCS vol. 7959, 203–218 (2013). Fouque P.A., Joux A., Tibouchi M.: Injective encodings to elliptic curves. In: ACISP 2013. LNCS vol. 7959, 203–218 (2013).
34.
go back to reference Freeman D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: EUROCRYPT 2010. LNCS vol. 6110, 44–61 (2010). Freeman D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: EUROCRYPT 2010. LNCS vol. 6110, 44–61 (2010).
35.
go back to reference Garg, S., Gentry C., Halevi S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT 2013. LNCS vol. 7881, pp. 1–17 (2013). Garg, S., Gentry C., Halevi S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT 2013. LNCS vol. 7881, pp. 1–17 (2013).
36.
go back to reference Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE Computer Society (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE Computer Society (2013)
38.
go back to reference Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98
39.
go back to reference Jager T., Schwenk J.: On the equivalence of generic group models. In: ProvSec 2008. LNCS vol. 5324, 200–209 (2008). Jager T., Schwenk J.: On the equivalence of generic group models. In: ProvSec 2008. LNCS vol. 5324, 200–209 (2008).
40.
go back to reference Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptol. 26, 191–224 (2013).MathSciNetCrossRefMATH Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptol. 26, 191–224 (2013).MathSciNetCrossRefMATH
41.
go back to reference Kim S., Lewi K., Mandal A., Montgomery H.W., Roy A., Wu D.J.: Function-hiding inner product encryption is practical. In: SCN 2018. LNCS vol. 11035, 544–562 (2018). Kim S., Lewi K., Mandal A., Montgomery H.W., Roy A., Wu D.J.: Function-hiding inner product encryption is practical. In: SCN 2018. LNCS vol. 11035, 544–562 (2018).
42.
go back to reference Lewko A.B., Waters B.: Unbounded HIBE and attribute-based encryption. In: EUROCRYPT 2011. LNCS vol. 6632, 547–567 (2011). Lewko A.B., Waters B.: Unbounded HIBE and attribute-based encryption. In: EUROCRYPT 2011. LNCS vol. 6632, 547–567 (2011).
43.
go back to reference Lindell Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: EUROCRYPT 2011. LNCS vol. 6632, 446–466 (2011). Lindell Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: EUROCRYPT 2011. LNCS vol. 6632, 446–466 (2011).
44.
go back to reference Maurer U.M.: Abstract models of computation in cryptography. In: IMA Int. Conf. LNCS vol. 3796, 1–12 (2005). Maurer U.M.: Abstract models of computation in cryptography. In: IMA Int. Conf. LNCS vol. 3796, 1–12 (2005).
45.
go back to reference Maurer U.M., Wolf S.: Diffie–Hellman oracles. In: CRYPTO 1996. LNCS vol. 1109, 268–282 (1996). Maurer U.M., Wolf S.: Diffie–Hellman oracles. In: CRYPTO 1996. LNCS vol. 1109, 268–282 (1996).
48.
go back to reference Nechaev V.I.: Complexity of a determinate algorithm for the discrete logarithm. In: Mathematical Notes, 1994, vol. 55, pp. 165–172. Translated from Maternaticheskie Zametki, 55(2):91–101, 1994 (1994) Nechaev V.I.: Complexity of a determinate algorithm for the discrete logarithm. In: Mathematical Notes, 1994, vol. 55, pp. 165–172. Translated from Maternaticheskie Zametki, 55(2):91–101, 1994 (1994)
49.
go back to reference Ostrovsky R., Sahai A., Waters B.: Attribute-based encryption with non-monotonic access structures. In: ACM CCS 2007, pp. 195–203. ACM (2007) Ostrovsky R., Sahai A., Waters B.: Attribute-based encryption with non-monotonic access structures. In: ACM CCS 2007, pp. 195–203. ACM (2007)
50.
go back to reference Rouselakis Y., Waters B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 Rouselakis Y., Waters B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474
51.
go back to reference Sahai A., Ananth P.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: EUROCRYPT (1) 2017. LNCS vol. 10210, 152–181 (2017). Sahai A., Ananth P.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: EUROCRYPT (1) 2017. LNCS vol. 10210, 152–181 (2017).
52.
go back to reference Sahai A., Waters B.: Fuzzy identity-based encryption. In: EUROCRYPT 2005. LNCS vol. 3494, 457–473 (2005). Sahai A., Waters B.: Fuzzy identity-based encryption. In: EUROCRYPT 2005. LNCS vol. 3494, 457–473 (2005).
53.
go back to reference Sans, E.D., Gay, R., Pointcheval, D.: Reading in the dark: classifying encrypted digits with functional encryption. In: ePrint Archive: Report 2018/206 (2018) Sans, E.D., Gay, R., Pointcheval, D.: Reading in the dark: classifying encrypted digits with functional encryption. In: ePrint Archive: Report 2018/206 (2018)
54.
55.
go back to reference Seo J.H., Kobayashi T., Ohkubo M., Suzuki K.: Anonymous hierarchical identity-based encryption with constant size ciphertexts. In: G. Tsudik, S. Jarecki (eds.) PKC 2009. LNCS vol. 5443, pp. 215–234 (2009). Seo J.H., Kobayashi T., Ohkubo M., Suzuki K.: Anonymous hierarchical identity-based encryption with constant size ciphertexts. In: G. Tsudik, S. Jarecki (eds.) PKC 2009. LNCS vol. 5443, pp. 215–234 (2009).
56.
go back to reference Shoup V.: Lower bounds for discrete logarithms and related problems. In: EUROCRYPT 1997, LNCS vol. 1233, 256–266 (1997). Shoup V.: Lower bounds for discrete logarithms and related problems. In: EUROCRYPT 1997, LNCS vol. 1233, 256–266 (1997).
57.
go back to reference Waters B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT 2005. LNCS vol. 3494, pp. 114–127 (2005). Waters B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT 2005. LNCS vol. 3494, pp. 114–127 (2005).
58.
go back to reference Waters B.: A punctured programming approach to adaptively secure functional encryption. In: CRYPTO 2015. LNCS vol. 9216, pp. 678–697 (2015). Waters B.: A punctured programming approach to adaptively secure functional encryption. In: CRYPTO 2015. LNCS vol. 9216, pp. 678–697 (2015).
Metadata
Title
On the security of functional encryption in the generic group model
Authors
Hyung Tae Lee
Jae Hong Seo
Publication date
27-05-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 9/2023
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01237-1

Other articles of this Issue 9/2023

Designs, Codes and Cryptography 9/2023 Go to the issue

Premium Partner