Skip to main content
Top
Published in: Optical and Quantum Electronics 4/2024

01-04-2024

On the soliton structures to the space-time fractional generalized reaction Duffing model and its applications

Authors: Kalim U. Tariq, Mustafa Inc, Mir Sajjad Hashemi

Published in: Optical and Quantum Electronics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the space-time fractional generalised reaction duffing model is investigated analytically, which is a generalization for a collection of prominent fractional models describing various key phenomenon in science and engineering. The governing equation is converted to a nonlinear ODE by the compatible travelling wave transform. The investigation established that for analysing nonlinear evolution equations of fractional order, the recommended approach is more effective and realistic. The findings are given extensively in rational forms of trigonometric function series or clearly in powers of specific trigonometric functions. A collection of bright, dark, periodic, and optical solitons is discovered. Mathematica is used to flourish the presence of some obtained solutions in 3D graphs with different fractional orders. The results show that the recommended methods are more practical and effective ways to illustrate the dynamics of several complex wave structures in modern science and technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)MathSciNet Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)MathSciNet
go back to reference Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Res. Phys. 52, 106761 (2023) Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Res. Phys. 52, 106761 (2023)
go back to reference Akram, S., Ahmad, J., Sarwar, S., Ali, A.: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quant. Electron. 55(5), 450 (2023a) Akram, S., Ahmad, J., Sarwar, S., Ali, A.: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quant. Electron. 55(5), 450 (2023a)
go back to reference Akram, S., Ahmad, J., Alkarni, S., Shah, N.A., et al.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023b) Akram, S., Ahmad, J., Alkarni, S., Shah, N.A., et al.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023b)
go back to reference Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the Cole-Hopf transformation and Hirota bilinear method. Opt. Quant. Electron. 54(9), 553 (2022) Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the Cole-Hopf transformation and Hirota bilinear method. Opt. Quant. Electron. 54(9), 553 (2022)
go back to reference Ali, M., Alquran, M., Jaradat, I.: Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell–Whitehead–Segel system. Adv. Differ. Equ. 2019(1), 1–9 (2019)MathSciNet Ali, M., Alquran, M., Jaradat, I.: Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell–Whitehead–Segel system. Adv. Differ. Equ. 2019(1), 1–9 (2019)MathSciNet
go back to reference Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)ADSMathSciNet Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)ADSMathSciNet
go back to reference Alquran, M.: New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quant. Electron. 54(10), 666 (2022) Alquran, M.: New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quant. Electron. 54(10), 666 (2022)
go back to reference Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023) Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023)
go back to reference An, T., Shahen, N.H.M., Ananna, S.N., Hossain, M.F., Muazu, T., et al.: Exact and explicit travelling-wave solutions to the family of new 3d fractional wbbm equations in mathematical physics. Res. Phys. 19, 103517 (2020) An, T., Shahen, N.H.M., Ananna, S.N., Hossain, M.F., Muazu, T., et al.: Exact and explicit travelling-wave solutions to the family of new 3d fractional wbbm equations in mathematical physics. Res. Phys. 19, 103517 (2020)
go back to reference Ananna, S.N., An, T., Shahen, N.H.M., et al.: Periodic and solitary wave solutions to a family of new 3d fractional wbbm equations using the two-variable method. Partial Differ. Equ. Appl. Math. 3, 100033 (2021) Ananna, S.N., An, T., Shahen, N.H.M., et al.: Periodic and solitary wave solutions to a family of new 3d fractional wbbm equations using the two-variable method. Partial Differ. Equ. Appl. Math. 3, 100033 (2021)
go back to reference Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M., et al.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3d fractional wbbm equations. Res. Phys. 41, 105969 (2022) Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M., et al.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3d fractional wbbm equations. Res. Phys. 41, 105969 (2022)
go back to reference Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S., et al.: Sine-gordon expansion method to construct the solitary wave solutions of a family of 3d fractional wbbm equations. Res. Phys. 40, 105845 (2022) Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S., et al.: Sine-gordon expansion method to construct the solitary wave solutions of a family of 3d fractional wbbm equations. Res. Phys. 40, 105845 (2022)
go back to reference Ananna, S.N., An, T., Asaduzzaman, M., Hasan, A., et al.: Optical soliton analysis to a family of 3d wbbm equations with conformable derivative via a dynamical approach. Partial Differ. Equ. Appl. Math. 5, 100238 (2022) Ananna, S.N., An, T., Asaduzzaman, M., Hasan, A., et al.: Optical soliton analysis to a family of 3d wbbm equations with conformable derivative via a dynamical approach. Partial Differ. Equ. Appl. Math. 5, 100238 (2022)
go back to reference Ananna, S.N., Gharami, P.P., An, T., Liu, W., Asaduzzaman, M., et al.: An innovative approach for developing the precise traveling wave solutions to a family of 3d fractional wbbm equations. Partial Differ. Equ. Appl. Math. 7, 100522 (2023) Ananna, S.N., Gharami, P.P., An, T., Liu, W., Asaduzzaman, M., et al.: An innovative approach for developing the precise traveling wave solutions to a family of 3d fractional wbbm equations. Partial Differ. Equ. Appl. Math. 7, 100522 (2023)
go back to reference Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations, vol. 2056. Springer, Berlin (2012) Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations, vol. 2056. Springer, Berlin (2012)
go back to reference Arnous, A.H., Mirzazadeh, M.: Application of the generalized Kudryashov method to the Eckhaus equation. Nonlinear Anal. Model. Control. 21(5), 577–586 (2016)MathSciNet Arnous, A.H., Mirzazadeh, M.: Application of the generalized Kudryashov method to the Eckhaus equation. Nonlinear Anal. Model. Control. 21(5), 577–586 (2016)MathSciNet
go back to reference Aslan, İ: Some remarks on exp-function method and its applications-a supplement. Commun. Theor. Phys. 60(5), 521 (2013)MathSciNet Aslan, İ: Some remarks on exp-function method and its applications-a supplement. Commun. Theor. Phys. 60(5), 521 (2013)MathSciNet
go back to reference Aslan, I., Marinakis, V.: Some remarks on exp-function method and its applications. Commun. Theor. Phys. 56(3), 397 (2011)MathSciNet Aslan, I., Marinakis, V.: Some remarks on exp-function method and its applications. Commun. Theor. Phys. 56(3), 397 (2011)MathSciNet
go back to reference Baskonus, H.M., Sulaiman, T.A., Bulut, H., Aktürk, T.: Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear schrödinger equation with \(\delta\)-potential. Superlattices Microstruct. 115, 19–29 (2018)ADS Baskonus, H.M., Sulaiman, T.A., Bulut, H., Aktürk, T.: Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear schrödinger equation with \(\delta\)-potential. Superlattices Microstruct. 115, 19–29 (2018)ADS
go back to reference Bekir, A., Younis, M., Rizvi, S.T., Sardar, A., Mahmood, S.A.: On traveling wave solutions: the decoupled nonlinear Schrodinger equations with inter modal dispersion. Comput. Methods Differ. Equ. 9, 52–62 (2021a)MathSciNet Bekir, A., Younis, M., Rizvi, S.T., Sardar, A., Mahmood, S.A.: On traveling wave solutions: the decoupled nonlinear Schrodinger equations with inter modal dispersion. Comput. Methods Differ. Equ. 9, 52–62 (2021a)MathSciNet
go back to reference Bekir, A., Shehata, M.S., Zahran, E.H.: New perception of the exact solutions of the 3d-fractional Wazwaz–Benjamin–Bona–Mahony (3d-fwbbm) equation. J. Interdiscip. Math. 24(4), 867–880 (2021b) Bekir, A., Shehata, M.S., Zahran, E.H.: New perception of the exact solutions of the 3d-fractional Wazwaz–Benjamin–Bona–Mahony (3d-fwbbm) equation. J. Interdiscip. Math. 24(4), 867–880 (2021b)
go back to reference Biswas, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons with quadratic–cubic nonlinearity by semi-inverse variational principle. Optik 139, 16–19 (2017)ADS Biswas, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons with quadratic–cubic nonlinearity by semi-inverse variational principle. Optik 139, 16–19 (2017)ADS
go back to reference Cheemaa, N., Chen, S., Seadawy, A.R.: Propagation of isolated waves of coupled nonlinear (2 + 1)-dimensional Maccari system in plasma physics. Res. Phys. 17, 102987 (2020) Cheemaa, N., Chen, S., Seadawy, A.R.: Propagation of isolated waves of coupled nonlinear (2 + 1)-dimensional Maccari system in plasma physics. Res. Phys. 17, 102987 (2020)
go back to reference El-Shiekh, R.M., Al-Nowehy, A.-G.: Integral methods to solve the variable coefficient nonlinear schrödinger equation. Zeitschrift für Naturforschung 68a, 255–260 (2013) El-Shiekh, R.M., Al-Nowehy, A.-G.: Integral methods to solve the variable coefficient nonlinear schrödinger equation. Zeitschrift für Naturforschung 68a, 255–260 (2013)
go back to reference Esen, A., Sulaiman, T.A., Bulut, H., Baskonus, H.M.: Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)ADS Esen, A., Sulaiman, T.A., Bulut, H., Baskonus, H.M.: Optical solitons to the space-time fractional (1 + 1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)ADS
go back to reference Fan, E., Hona, Y.: Generalized tanh method extended to special types of nonlinear equations. Zeitschrift für Naturforschung A 57(8), 692–700 (2002)ADS Fan, E., Hona, Y.: Generalized tanh method extended to special types of nonlinear equations. Zeitschrift für Naturforschung A 57(8), 692–700 (2002)ADS
go back to reference Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Revista mexicana de física 66(6), 771–781 (2020)MathSciNet Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Revista mexicana de física 66(6), 771–781 (2020)MathSciNet
go back to reference Hashemi, M.S.: Some new exact solutions of (2 + 1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative. Opt. Quant. Electron. 50(2), 1–11 (2018) Hashemi, M.S.: Some new exact solutions of (2 + 1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative. Opt. Quant. Electron. 50(2), 1–11 (2018)
go back to reference Hashemi, M.S.: A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos, Solitons & Fractals 152, 111367 (2021a)MathSciNet Hashemi, M.S.: A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos, Solitons & Fractals 152, 111367 (2021a)MathSciNet
go back to reference Hashemi, M.S.: Numerical study of the one-dimensional coupled nonlinear Sine–Gordon equations by a novel geometric meshless method. Eng. Comput. 37(4), 3397–3407 (2021b) Hashemi, M.S.: Numerical study of the one-dimensional coupled nonlinear Sine–Gordon equations by a novel geometric meshless method. Eng. Comput. 37(4), 3397–3407 (2021b)
go back to reference Hashemi, M.S., Baleanu, D.: Lie Symmetry Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2020) Hashemi, M.S., Baleanu, D.: Lie Symmetry Analysis of Fractional Differential Equations. CRC Press, Boca Raton (2020)
go back to reference Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(4), 867–877 (2013)ADSMathSciNet Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(4), 867–877 (2013)ADSMathSciNet
go back to reference Hashemi, M.S., Darvishi, E., Baleanu, D.: A geometric approach for solving the density-dependent diffusion Nagumo equation. Adv. Differ. Equ. 2016(1), 1–13 (2016)MathSciNet Hashemi, M.S., Darvishi, E., Baleanu, D.: A geometric approach for solving the density-dependent diffusion Nagumo equation. Adv. Differ. Equ. 2016(1), 1–13 (2016)MathSciNet
go back to reference He, J.-H., Wu, X.-H.: Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 30(3), 700–708 (2006)ADSMathSciNet He, J.-H., Wu, X.-H.: Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 30(3), 700–708 (2006)ADSMathSciNet
go back to reference He, Z.-Y., Abbes, A., Jahanshahi, H., Alotaibi, N.D., Wang, Y.: Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics 10(2), 165 (2022) He, Z.-Y., Abbes, A., Jahanshahi, H., Alotaibi, N.D., Wang, Y.: Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics 10(2), 165 (2022)
go back to reference Hong, B., Lu, D.: New Jacobi elliptic functions solutions for the higher-order nonlinear Schrodinger equation. Int. J. Nonlinear Sci. 7(3), 360–367 (2009)MathSciNet Hong, B., Lu, D.: New Jacobi elliptic functions solutions for the higher-order nonlinear Schrodinger equation. Int. J. Nonlinear Sci. 7(3), 360–367 (2009)MathSciNet
go back to reference Hosseini, K., Osman, M., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 206, 164259 (2020)ADS Hosseini, K., Osman, M., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 206, 164259 (2020)ADS
go back to reference Inc, M., Yusuf, A., Isa, A., Hashemi, M.S.: Soliton solutions stability analysis and conservation laws for the Brusselator reaction diffusion model with time-and constant-dependent coefficients. Eur. Phys. J. Plus 133(5), 1–11 (2018) Inc, M., Yusuf, A., Isa, A., Hashemi, M.S.: Soliton solutions stability analysis and conservation laws for the Brusselator reaction diffusion model with time-and constant-dependent coefficients. Eur. Phys. J. Plus 133(5), 1–11 (2018)
go back to reference Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on date-Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6(1), 4 (2022) Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on date-Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6(1), 4 (2022)
go back to reference Islam, M.E., Akbar, M.A.: Stable wave solutions to the Landau–Ginzburg–Higgs equation and the modified equal width wave equation using the ibsef method. Arab J. Basic Appl. Sci. 27(1), 270–278 (2020) Islam, M.E., Akbar, M.A.: Stable wave solutions to the Landau–Ginzburg–Higgs equation and the modified equal width wave equation using the ibsef method. Arab J. Basic Appl. Sci. 27(1), 270–278 (2020)
go back to reference Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020) Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)
go back to reference Jawad, A.J.M., Petković, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)MathSciNet Jawad, A.J.M., Petković, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)MathSciNet
go back to reference Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)MathSciNet Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)MathSciNet
go back to reference Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)MathSciNet Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)MathSciNet
go back to reference Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNet Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNet
go back to reference Khater, M.M., Kumar, D.: Implementation of three reliable methods for finding the exact solutions of (2 + 1) dimensional generalized fractional evolution equations. Opt. Quant. Electron. 50(11), 427 (2018) Khater, M.M., Kumar, D.: Implementation of three reliable methods for finding the exact solutions of (2 + 1) dimensional generalized fractional evolution equations. Opt. Quant. Electron. 50(11), 427 (2018)
go back to reference Khater, M.M., Jhangeer, A., Rezazadeh, H., Akinyemi, L., Akbar, M.A., Inc, M., Ahmad, H.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quant. Electron. 53, 1–27 (2021) Khater, M.M., Jhangeer, A., Rezazadeh, H., Akinyemi, L., Akbar, M.A., Inc, M., Ahmad, H.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quant. Electron. 53, 1–27 (2021)
go back to reference Kohl, R.W., Biswas, A., Zhou, Q., Ekici, M., Alzahrani, A.K., Belic, M.R.: Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle. Chaos, Solitons & Fractals 135, 109765 (2020)MathSciNet Kohl, R.W., Biswas, A., Zhou, Q., Ekici, M., Alzahrani, A.K., Belic, M.R.: Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle. Chaos, Solitons & Fractals 135, 109765 (2020)MathSciNet
go back to reference Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)MathSciNet Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)MathSciNet
go back to reference Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018) Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)
go back to reference Li, Z.-B., He, J.-H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)MathSciNet Li, Z.-B., He, J.-H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)MathSciNet
go back to reference Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine–cosine and extended rational sinh–cosh techniques. Phys. Scr. 94(11), 115212 (2019)ADS Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine–cosine and extended rational sinh–cosh techniques. Phys. Scr. 94(11), 115212 (2019)ADS
go back to reference Malfliet, W., Hereman, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. Scr. 54(6), 569 (1996)ADSMathSciNet Malfliet, W., Hereman, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. Scr. 54(6), 569 (1996)ADSMathSciNet
go back to reference Mamun, A.-A., Ananna, S.N., An, T., Shahen, N.H.M., Asaduzzaman, M., et al.: Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7(8) Mamun, A.-A., Ananna, S.N., An, T., Shahen, N.H.M., Asaduzzaman, M., et al.: Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7(8)
go back to reference Mingliang, W.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 6(212), 353 (1996) Mingliang, W.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 6(212), 353 (1996)
go back to reference Nadeem, M., Ahmad, J., Nusrat, F., Iambor, L.F.: Fuzzy solutions of some variants of the fractional order Korteweg–de-Vries equations via an analytical method. Alex. Eng. J. 80, 8–21 (2023) Nadeem, M., Ahmad, J., Nusrat, F., Iambor, L.F.: Fuzzy solutions of some variants of the fractional order Korteweg–de-Vries equations via an analytical method. Alex. Eng. J. 80, 8–21 (2023)
go back to reference Osman, M., Almusawa, H., Tariq, K. U., Anwar, S., Kumar, S., Younis, M., Ma, W.-X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci Osman, M., Almusawa, H., Tariq, K. U., Anwar, S., Kumar, S., Younis, M., Ma, W.-X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci
go back to reference Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999) Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)
go back to reference Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216 (2023)ADS Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216 (2023)ADS
go back to reference Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction duffing model by generalized projective Riccati equation method. Opt. Quant. Electron. 50(3), 1–13 (2018) Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction duffing model by generalized projective Riccati equation method. Opt. Quant. Electron. 50(3), 1–13 (2018)
go back to reference Rezazadeh, H., Odabasi, M., Tariq, K.U., Abazari, R., Baskonus, H.M.: On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients. Chin. J. Phys. 72, 403–414 (2021) Rezazadeh, H., Odabasi, M., Tariq, K.U., Abazari, R., Baskonus, H.M.: On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients. Chin. J. Phys. 72, 403–414 (2021)
go back to reference Rizvi, S., Seadawy, A.R., Younis, M., Ali, I., Althobaiti, S., Mahmoud, S.F.: Soliton solutions, Painleve analysis and conservation laws for a nonlinear evolution equation. Res. Phys. 23, 103999 (2021) Rizvi, S., Seadawy, A.R., Younis, M., Ali, I., Althobaiti, S., Mahmoud, S.F.: Soliton solutions, Painleve analysis and conservation laws for a nonlinear evolution equation. Res. Phys. 23, 103999 (2021)
go back to reference Roy, R., Akbar, M.A.: A new approach to study nonlinear space-time fractional Sine-Gordon and burgers equations. IOP SciNotes 1(3), 035003 (2020)ADS Roy, R., Akbar, M.A.: A new approach to study nonlinear space-time fractional Sine-Gordon and burgers equations. IOP SciNotes 1(3), 035003 (2020)ADS
go back to reference Roy, R., Akbar, M.A., Seadawy, A.R., Baleanu, D.: Search for adequate closed form wave solutions to space-time fractional nonlinear equations. Partial Differ. Equ. Appl. Math. 3, 100025 (2021) Roy, R., Akbar, M.A., Seadawy, A.R., Baleanu, D.: Search for adequate closed form wave solutions to space-time fractional nonlinear equations. Partial Differ. Equ. Appl. Math. 3, 100025 (2021)
go back to reference Savescu, M., Bhrawy, A., Hilal, E., Alshaery, A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59(5–6), 582–589 (2014) Savescu, M., Bhrawy, A., Hilal, E., Alshaery, A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59(5–6), 582–589 (2014)
go back to reference Seadawy, A.R., Tariq, K.U.: On some novel solitons to the generalized (1 + 1)-dimensional unstable space-time fractional nonlinear Schrödinger model emerging in the optical fibers. Opt. Quant. Electron. 53(1), 1–16 (2021) Seadawy, A.R., Tariq, K.U.: On some novel solitons to the generalized (1 + 1)-dimensional unstable space-time fractional nonlinear Schrödinger model emerging in the optical fibers. Opt. Quant. Electron. 53(1), 1–16 (2021)
go back to reference Seadawy, A.R., Ahmed, H.M., Rabie, W.B., Biswas, A.: Chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having polynomial law of nonlinearity. Optik 225, 165681 (2021)ADS Seadawy, A.R., Ahmed, H.M., Rabie, W.B., Biswas, A.: Chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having polynomial law of nonlinearity. Optik 225, 165681 (2021)ADS
go back to reference Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein–Gordon equation. Optik 135, 337–345 (2017)ADS Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein–Gordon equation. Optik 135, 337–345 (2017)ADS
go back to reference Wazwaz, A.-M.: The tanh method and the sine-cosine method for solving the kp-mew equation. Int. J. Comput. Math. 82(2), 235–246 (2005)MathSciNet Wazwaz, A.-M.: The tanh method and the sine-cosine method for solving the kp-mew equation. Int. J. Comput. Math. 82(2), 235–246 (2005)MathSciNet
go back to reference Wazwaz, A.-M.: The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006)ADSMathSciNet Wazwaz, A.-M.: The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006)ADSMathSciNet
go back to reference Wazwaz, A.-M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13(5), 889–901 (2008)ADSMathSciNet Wazwaz, A.-M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13(5), 889–901 (2008)ADSMathSciNet
go back to reference Wazwaz, A.-M.: Two new painlevé integrable kdv–Calogero–Bogoyavlenskii–Schiff (kdv-cbs) equation and new negative-order kdv-cbs equation. Nonlinear Dyn. 104(4), 4311–4315 (2021) Wazwaz, A.-M.: Two new painlevé integrable kdv–Calogero–Bogoyavlenskii–Schiff (kdv-cbs) equation and new negative-order kdv-cbs equation. Nonlinear Dyn. 104(4), 4311–4315 (2021)
go back to reference Wu, G.-Z., Yu, L.-J., Wang, Y.-Y.: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 207, 164405 (2020)ADS Wu, G.-Z., Yu, L.-J., Wang, Y.-Y.: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 207, 164405 (2020)ADS
go back to reference Yaro, D., Seadawy, A., Lu, D.-C.: Propagation of traveling wave solutions for nonlinear evolution equation through the implementation of the extended modified direct algebraic method. Appl. Math. A J. Chin. Univers. 35(1), 84–100 (2020)MathSciNet Yaro, D., Seadawy, A., Lu, D.-C.: Propagation of traveling wave solutions for nonlinear evolution equation through the implementation of the extended modified direct algebraic method. Appl. Math. A J. Chin. Univers. 35(1), 84–100 (2020)MathSciNet
go back to reference Zayed, E.M.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218(7), 3962–3964 (2011)MathSciNet Zayed, E.M.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218(7), 3962–3964 (2011)MathSciNet
go back to reference Zayed, E., Arnous, A.: Exact traveling wave solutions of nonlinear pdes in mathematical physics using the modified simple equation method. Appl. Appl. Math. 8, 553–572 (2013)MathSciNet Zayed, E., Arnous, A.: Exact traveling wave solutions of nonlinear pdes in mathematical physics using the modified simple equation method. Appl. Appl. Math. 8, 553–572 (2013)MathSciNet
go back to reference Zhang, S.: Application of exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons & Fractals 38(1), 270–276 (2008)ADSMathSciNet Zhang, S.: Application of exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons & Fractals 38(1), 270–276 (2008)ADSMathSciNet
go back to reference Zhang, X., Chen, Y.: Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 98, 306–313 (2019)MathSciNet Zhang, X., Chen, Y.: Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 98, 306–313 (2019)MathSciNet
go back to reference Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 84(4), 1883–1900 (2016)MathSciNet Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 84(4), 1883–1900 (2016)MathSciNet
Metadata
Title
On the soliton structures to the space-time fractional generalized reaction Duffing model and its applications
Authors
Kalim U. Tariq
Mustafa Inc
Mir Sajjad Hashemi
Publication date
01-04-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 4/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06348-0

Other articles of this Issue 4/2024

Optical and Quantum Electronics 4/2024 Go to the issue