Skip to main content
Top

18-04-2024 | Original Paper

On the thermoelastic model of real materials with relaxation dynamics of defects

Authors: Nikita F. Morozov, Dmitry A. Indeitsev, Kirill L. Muratikov, Boris N. Semenov, Dmitry S. Vavilov, Aleksey A. Kudryavtsev

Published in: Acta Mechanica

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is shown that the conventional theory of thermoelasticity is insufficient to explain the behavior of pulsed laser ultrasonic signals from materials with defects. A theoretical model of thermoelasticity is proposed that takes into account the thermal excitation of defect states by laser radiation with their subsequent recovery to the initial state with a certain relaxation time. The linear model of thermoelasticity in terms of slow dynamics is developed. The difference in the behavior of ultrasonic signals from dielectrics and metals under pulsed laser excitation is analyzed and explained. It is shown that in the linear approximation of the thermoelastic model, slow dynamic effects can be taken into account by introducing an effective thermal coefficient.
Literature
1.
go back to reference Molchanov, I.S., Chin, S.N., Zuyev, S.: Design of inhomogeneous materials with given structural properties. Phys. Rev. A 62, 4544–4552 (2000)MathSciNet Molchanov, I.S., Chin, S.N., Zuyev, S.: Design of inhomogeneous materials with given structural properties. Phys. Rev. A 62, 4544–4552 (2000)MathSciNet
2.
go back to reference Savage, E.N.: New complex alloys push the limits of materials. ACS Cent. Sci. 7, 1463–1466 (2021)CrossRef Savage, E.N.: New complex alloys push the limits of materials. ACS Cent. Sci. 7, 1463–1466 (2021)CrossRef
3.
go back to reference Vakhnenko, O.O., Vakhnenko, V.O., Shankland, T.J.: Softratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks. Phys. Rev. B 71, 174103 (2005)CrossRef Vakhnenko, O.O., Vakhnenko, V.O., Shankland, T.J.: Softratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks. Phys. Rev. B 71, 174103 (2005)CrossRef
4.
go back to reference Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999)CrossRef Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999)CrossRef
5.
go back to reference Remillieux, M.C., Guyer, R.A., Payan, C., Ulrich, T.J.: Decoupling nonclassical nonlinear behavior of elastic wave types. Phys. Rev. Lett. 116, 115501 (2016)CrossRef Remillieux, M.C., Guyer, R.A., Payan, C., Ulrich, T.J.: Decoupling nonclassical nonlinear behavior of elastic wave types. Phys. Rev. Lett. 116, 115501 (2016)CrossRef
6.
go back to reference Lebedev, A.V., Ostrovsky, L.A.: A unified model of hysteresis and long-time relaxation in heterogeneous materials. Acoust. Phys. 60, 555 (2014)CrossRef Lebedev, A.V., Ostrovsky, L.A.: A unified model of hysteresis and long-time relaxation in heterogeneous materials. Acoust. Phys. 60, 555 (2014)CrossRef
7.
go back to reference Kober, J., Kruisova, A., Scalerandi, M.: Elastic slow dynamics in polycrystalline alloys. Appl. Sci. 11, 8631 (2021)CrossRef Kober, J., Kruisova, A., Scalerandi, M.: Elastic slow dynamics in polycrystalline alloys. Appl. Sci. 11, 8631 (2021)CrossRef
8.
go back to reference Korobov, A.I., Odina, N.I., Mekhedov, D.M.: Effect of slow dynamics on elastic properties of materials with residual and shear strains. Acoust. Phys. 59, 387 (2013)CrossRef Korobov, A.I., Odina, N.I., Mekhedov, D.M.: Effect of slow dynamics on elastic properties of materials with residual and shear strains. Acoust. Phys. 59, 387 (2013)CrossRef
9.
go back to reference Glazov, A.L., Muratikov, K.L.: The influence of mechanical stresses in a D16 aluminum-alloy plate on the generation of acoustic waves under laser Irradiation. Tech. Phys. Lett. 45(9), 902–905 (2019)CrossRef Glazov, A.L., Muratikov, K.L.: The influence of mechanical stresses in a D16 aluminum-alloy plate on the generation of acoustic waves under laser Irradiation. Tech. Phys. Lett. 45(9), 902–905 (2019)CrossRef
10.
go back to reference Glazov, A.L., Muratikov, K.L.: Acoustic oscillations of aluminum membranes laser-excited by a thermoelastic mechanism. Tech. Phys. Lett. 46(5), 477–479 (2020)CrossRef Glazov, A.L., Muratikov, K.L.: Acoustic oscillations of aluminum membranes laser-excited by a thermoelastic mechanism. Tech. Phys. Lett. 46(5), 477–479 (2020)CrossRef
11.
go back to reference Glazov, A.L., Muratikov, K.L.: The influence of mechanical stresses on the characteristics of laser-ultrasonic signals in the vicinity of a hole in silicon nitride ceramics. Tech. Phys. Lett. 47(6), 624–627 (2021) Glazov, A.L., Muratikov, K.L.: The influence of mechanical stresses on the characteristics of laser-ultrasonic signals in the vicinity of a hole in silicon nitride ceramics. Tech. Phys. Lett. 47(6), 624–627 (2021)
12.
go back to reference Glazov, A.L., Muratikov, K.L.: Laser ultrasound imaging of mechanical stresses near holes and indented areas: experimental results and theoretical model. J. Appl. Phys. 131, 245104 (2022)CrossRef Glazov, A.L., Muratikov, K.L.: Laser ultrasound imaging of mechanical stresses near holes and indented areas: experimental results and theoretical model. J. Appl. Phys. 131, 245104 (2022)CrossRef
13.
go back to reference Glazov, A.L., Muratikov, K.L.: Relaxation effects in thermoelastically generated ultrasound in stressed dielectric and conductive materials. Phys. Rev. B 105, 214104 (2022)CrossRef Glazov, A.L., Muratikov, K.L.: Relaxation effects in thermoelastically generated ultrasound in stressed dielectric and conductive materials. Phys. Rev. B 105, 214104 (2022)CrossRef
14.
go back to reference Bentahar, M., Bentahar, H., Aqra, El., El Guerjouma, R., Griffa, M., Scalerandi, M.: Hysteretic elasticity in damaged concrete: Quantitative analysis of slow and fast dynamics. Phys. Rev. B 73, 014116 (2006)CrossRef Bentahar, M., Bentahar, H., Aqra, El., El Guerjouma, R., Griffa, M., Scalerandi, M.: Hysteretic elasticity in damaged concrete: Quantitative analysis of slow and fast dynamics. Phys. Rev. B 73, 014116 (2006)CrossRef
15.
go back to reference Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity. Wiley-VCH, Weinheim (2009)CrossRef Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity. Wiley-VCH, Weinheim (2009)CrossRef
16.
go back to reference Lott, M., Remillieux, M.C., Garnier, V., Le Bas, P.-Y., Ulrich, T.J., Payan, C.: Nonlinear elasticity in rocks: a comprehensive three-dimensional description. Phys. Rev. Mater. 1, 023603 (2017)CrossRef Lott, M., Remillieux, M.C., Garnier, V., Le Bas, P.-Y., Ulrich, T.J., Payan, C.: Nonlinear elasticity in rocks: a comprehensive three-dimensional description. Phys. Rev. Mater. 1, 023603 (2017)CrossRef
17.
go back to reference Mirzoev, FKh., Panchenko, V., Ya, V., Shelepin, L.A.: Laser control of processes in solids. J. Phys. Usp. 39, 1 (1996)CrossRef Mirzoev, FKh., Panchenko, V., Ya, V., Shelepin, L.A.: Laser control of processes in solids. J. Phys. Usp. 39, 1 (1996)CrossRef
18.
go back to reference Kosevich, A.M.: Physical Mechanics of Real Crystals. Naukova Dumka, Kiev (1981). (in Russian) Kosevich, A.M.: Physical Mechanics of Real Crystals. Naukova Dumka, Kiev (1981). (in Russian)
19.
go back to reference Novikova, S.I.: Thermal Expansion of Solids. Izdatel, Nauka, Moscow (1974). ((in Russian)) Novikova, S.I.: Thermal Expansion of Solids. Izdatel, Nauka, Moscow (1974). ((in Russian))
20.
go back to reference Sudenkov, Yu.V., Zimin, B.A.: Effect of “the thermal piston” in dynamic thermoelastic problem. Int. J. Heat Mass Transf. 85, 781–786 (2015)CrossRef Sudenkov, Yu.V., Zimin, B.A.: Effect of “the thermal piston” in dynamic thermoelastic problem. Int. J. Heat Mass Transf. 85, 781–786 (2015)CrossRef
21.
go back to reference Kovalenko, A.D.: Thermoelasticity Basic theory and applications. Wolters-Noordhoff, Groningen (1970) Kovalenko, A.D.: Thermoelasticity Basic theory and applications. Wolters-Noordhoff, Groningen (1970)
22.
go back to reference Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer, Berlin (1975) Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer, Berlin (1975)
23.
go back to reference Slepyan, L.I.: Analysis of Non-steady-state Strain by Means of Series Defined in a Variable Interval. Izv. Ac. Sci.USSR, Mekhanika (4), 62–69 (1965) (in Russian) Slepyan, L.I.: Analysis of Non-steady-state Strain by Means of Series Defined in a Variable Interval. Izv. Ac. Sci.USSR, Mekhanika (4), 62–69 (1965) (in Russian)
24.
go back to reference Indeitsev, D.A., Semenov, B.N., Vavilov, D.S.: On the method of expansion on a variable interval for non-stationary problems in continuum mechanics. Acta Mech. 232(5), 1961–1969 (2021)MathSciNetCrossRef Indeitsev, D.A., Semenov, B.N., Vavilov, D.S.: On the method of expansion on a variable interval for non-stationary problems in continuum mechanics. Acta Mech. 232(5), 1961–1969 (2021)MathSciNetCrossRef
25.
go back to reference Wolverton, C.: Solute-vacancy binding in aluminum. Acta Mater. 55, 5867 (2007)CrossRef Wolverton, C.: Solute-vacancy binding in aluminum. Acta Mater. 55, 5867 (2007)CrossRef
26.
go back to reference Clouet, E.: The vacancy-edge dislocation interaction in fcc metals: a comparison between atomic simulations and elasticity theory. Acta Mater. 54, 3543 (2006)CrossRef Clouet, E.: The vacancy-edge dislocation interaction in fcc metals: a comparison between atomic simulations and elasticity theory. Acta Mater. 54, 3543 (2006)CrossRef
27.
go back to reference Young, G.A., Jr., Scully, J.R.: The diffusion and trapping of hydrogen in high purity aluminum. Acta Mater. 46, 6337 (1998)CrossRef Young, G.A., Jr., Scully, J.R.: The diffusion and trapping of hydrogen in high purity aluminum. Acta Mater. 46, 6337 (1998)CrossRef
28.
go back to reference Glazov, A.L., Muratikov, K.L.: Generalized thermoelastic effect in real metals and its application for describing photoacoustic experiments with Al membranes. J. Appl. Phys. 128, 095106 (2020)CrossRef Glazov, A.L., Muratikov, K.L.: Generalized thermoelastic effect in real metals and its application for describing photoacoustic experiments with Al membranes. J. Appl. Phys. 128, 095106 (2020)CrossRef
Metadata
Title
On the thermoelastic model of real materials with relaxation dynamics of defects
Authors
Nikita F. Morozov
Dmitry A. Indeitsev
Kirill L. Muratikov
Boris N. Semenov
Dmitry S. Vavilov
Aleksey A. Kudryavtsev
Publication date
18-04-2024
Publisher
Springer Vienna
Published in
Acta Mechanica
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-024-03924-z

Premium Partners