Skip to main content
Top
Published in: Journal of Materials Science 21/2021

15-04-2021 | Composites & nanocomposites

One-pot green extraction of high charge density cellulose nanocrystals with high yield for bionanocomposites

Authors: Qi-Lin Lu, Jiayin Wu, Yonggui Li, Lu Li, Biao Huang

Published in: Journal of Materials Science | Issue 21/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of lignocellulosic materials for extracting functionalized cellulose nanocrystals (FCNs) in a green and sustainable method under mild conditions is limited owing to the strong hydrogen bonding in cellulose. A facile, green, and high-efficient avenue was developed to produce FCNs with high yield through the mechanochemistry synergetic effect of recyclable p-toluenesulfonic acid (PTSA)-catalyzed deep eutectic solvent (PDES) and microwave- solvothermal (MWS). FCNs with a high charge density of 1.59 e nm−2, a crystallinity of 81%, a better thermostability and dispersibility were obtained at a high yield of 87.6% by the one-step processing. The PDES could be easily recycled, and thus was beneficial to cost reduction and waste liquor treatment. Generated FCNs could be used to develop functional bionanocomposites due to their enhanced effect. When a loading of 1 wt% FCNs was added into gelatin matrix, the tensile strength and Young’s modulus of the bionanocomposites increased 188 and 131%, respectively, suggesting their remarkable stress transfer potential. Thus, the study demonstrates a green and cost-effective approach for the mass production of FCNs, contributing to strong potential in building high-performance bionanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144CrossRef Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144CrossRef
2.
go back to reference Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933CrossRef Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933CrossRef
3.
go back to reference Wang H, Zhu JJ, Ma Q, Agarwal UP, Gleisner R, Reiner R, Baez C, Zhu JY (2020) Pilot-scale production of cellulosic nanowhiskers with similar morphology to cellulose nanocrystals. Front Bioeng Biotechnol 8:565084CrossRef Wang H, Zhu JJ, Ma Q, Agarwal UP, Gleisner R, Reiner R, Baez C, Zhu JY (2020) Pilot-scale production of cellulosic nanowhiskers with similar morphology to cellulose nanocrystals. Front Bioeng Biotechnol 8:565084CrossRef
4.
go back to reference Ji H, Xiang Z, Qi H, Han T, Pranovich A, Song T (2019) Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem 21:1956–1964CrossRef Ji H, Xiang Z, Qi H, Han T, Pranovich A, Song T (2019) Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem 21:1956–1964CrossRef
5.
go back to reference Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843CrossRef Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843CrossRef
6.
go back to reference Zhang Y, Xu W, Wang X, Ni S, Rosqvist E, Smått J-H, Peltonen J, Hou Q, Qin M, Willför S, Xu C (2019) from biomass to nanomaterials: a green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation. ACS Sustain Chem Eng 7:6592–6600CrossRef Zhang Y, Xu W, Wang X, Ni S, Rosqvist E, Smått J-H, Peltonen J, Hou Q, Qin M, Willför S, Xu C (2019) from biomass to nanomaterials: a green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation. ACS Sustain Chem Eng 7:6592–6600CrossRef
7.
go back to reference Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2013) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258CrossRef Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2013) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258CrossRef
8.
go back to reference Zhou L, Li N, Shu J, Liu Y, Wang K, Cui X, Yuan Y, Ding B, Geng Y, Wang Z, Duan Y, Zhang J (2018) One-pot preparation of carboxylated cellulose nanocrystals and their liquid crystalline behaviors. ACS Sustain Chem Eng 6:12403–12410CrossRef Zhou L, Li N, Shu J, Liu Y, Wang K, Cui X, Yuan Y, Ding B, Geng Y, Wang Z, Duan Y, Zhang J (2018) One-pot preparation of carboxylated cellulose nanocrystals and their liquid crystalline behaviors. ACS Sustain Chem Eng 6:12403–12410CrossRef
9.
go back to reference Barazzouk S, Daneault C (2011) Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids. Cellulose 18:643–653CrossRef Barazzouk S, Daneault C (2011) Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids. Cellulose 18:643–653CrossRef
10.
go back to reference Shen XJ, Wen JL, Mei QQ, Chen X, Sun D, Yuan TQ, Sun RC (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283CrossRef Shen XJ, Wen JL, Mei QQ, Chen X, Sun D, Yuan TQ, Sun RC (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283CrossRef
11.
go back to reference Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032CrossRef Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032CrossRef
12.
go back to reference Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu SX, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631CrossRef Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu SX, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631CrossRef
13.
go back to reference Yang X, Xie H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Chuanling S (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7:7200–7208CrossRef Yang X, Xie H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Chuanling S (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7:7200–7208CrossRef
14.
go back to reference Chen L, Dou J, Ma Q, Li N, Wu R, Bian H, Yelle D, Vuorinen T, Fu S, Pan X, Zhu JY (2017) Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci Adv 3:e1701735CrossRef Chen L, Dou J, Ma Q, Li N, Wu R, Bian H, Yelle D, Vuorinen T, Fu S, Pan X, Zhu JY (2017) Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci Adv 3:e1701735CrossRef
15.
go back to reference Xu Y, Yang X, Yue X (2017) Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose 24:967–976CrossRef Xu Y, Yang X, Yue X (2017) Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose 24:967–976CrossRef
16.
go back to reference Lin CX, Zhan HY, Liu MH, Fu SY, Huang LH (2010) Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci 118:399–404CrossRef Lin CX, Zhan HY, Liu MH, Fu SY, Huang LH (2010) Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci 118:399–404CrossRef
17.
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRef
18.
go back to reference Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492CrossRef Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492CrossRef
19.
go back to reference Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRef Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRef
20.
go back to reference Samira EH, Yoshiharu N, Jean-Luc P, Laurent H, Frédéric D, Cyrille R (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef Samira EH, Yoshiharu N, Jean-Luc P, Laurent H, Frédéric D, Cyrille R (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef
21.
go back to reference Yang H, Alam MN, De Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875CrossRef Yang H, Alam MN, De Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875CrossRef
22.
go back to reference Li Y, Liu Y, Chen W, Wang Q, Liu Y, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef Li Y, Liu Y, Chen W, Wang Q, Liu Y, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef
23.
go back to reference Khoshkava V, Kamal M (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of PP/CNC nanocomposites. ACS Appl Mater Interfaces 6:8146–8157CrossRef Khoshkava V, Kamal M (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of PP/CNC nanocomposites. ACS Appl Mater Interfaces 6:8146–8157CrossRef
24.
go back to reference Yang S, Tang Y, Wang J, Kong F, Zhang J (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 53:13980–13988CrossRef Yang S, Tang Y, Wang J, Kong F, Zhang J (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 53:13980–13988CrossRef
25.
go back to reference Tang Y, He Z, Mosseler J, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581CrossRef Tang Y, He Z, Mosseler J, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581CrossRef
26.
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
27.
go back to reference Li Y, Yu S, Pan C, Rojas R, Hajian A, Berglund L (2017) Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 34:541–548CrossRef Li Y, Yu S, Pan C, Rojas R, Hajian A, Berglund L (2017) Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 34:541–548CrossRef
28.
go back to reference Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612CrossRef Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612CrossRef
29.
go back to reference Lu Q, Lu L, Li Y, Huang B (2019) Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy. Cellulose 26:7741–7751CrossRef Lu Q, Lu L, Li Y, Huang B (2019) Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy. Cellulose 26:7741–7751CrossRef
30.
go back to reference Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528CrossRef Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528CrossRef
31.
go back to reference Bian H, Luo J, Wang R, Zhou X, Ni S, Shi R, Fang G, Dai H (2019) Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain Chem Eng 7:20022–20031CrossRef Bian H, Luo J, Wang R, Zhou X, Ni S, Shi R, Fang G, Dai H (2019) Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain Chem Eng 7:20022–20031CrossRef
32.
go back to reference Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromol 11:762–768CrossRef Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromol 11:762–768CrossRef
33.
go back to reference Lu Q, Zhang S, Xiong M, Lin F, Tang L, Huang B, Chen Y (2018) One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr Polym 196:225–232CrossRef Lu Q, Zhang S, Xiong M, Lin F, Tang L, Huang B, Chen Y (2018) One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr Polym 196:225–232CrossRef
34.
go back to reference Singh G, Singh G, Damarla K, Sharma P, Kumar A, Singh T (2017) Gelatin based highly stretchable, self-healing, conducting, multi-adhesive and antimicrobial ionogels embedded with Ag2O nanoparticles. ACS Sustain Chem Eng 5:6568–6577CrossRef Singh G, Singh G, Damarla K, Sharma P, Kumar A, Singh T (2017) Gelatin based highly stretchable, self-healing, conducting, multi-adhesive and antimicrobial ionogels embedded with Ag2O nanoparticles. ACS Sustain Chem Eng 5:6568–6577CrossRef
35.
go back to reference Vyalikh A, Simon P, Rosseeva E, Buder J, Kniep R, Scheler U (2014) Intergrowth and interfacial structure of biomimetic fluorapatite-gelatin nanocomposite: a solid-state NMR study. J Phys Chem B 118:724–730CrossRef Vyalikh A, Simon P, Rosseeva E, Buder J, Kniep R, Scheler U (2014) Intergrowth and interfacial structure of biomimetic fluorapatite-gelatin nanocomposite: a solid-state NMR study. J Phys Chem B 118:724–730CrossRef
36.
go back to reference Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58:998–1003CrossRef Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58:998–1003CrossRef
37.
go back to reference Gellman S, Dado G, Liang GB, Adams B (1991) Conformation-directing effects of a single intramolecular amide-amide hydrogen bond: variable-temperature NMR and IR studies on a homologous diamide series. J Am Chem Soc 113:1164–1173CrossRef Gellman S, Dado G, Liang GB, Adams B (1991) Conformation-directing effects of a single intramolecular amide-amide hydrogen bond: variable-temperature NMR and IR studies on a homologous diamide series. J Am Chem Soc 113:1164–1173CrossRef
Metadata
Title
One-pot green extraction of high charge density cellulose nanocrystals with high yield for bionanocomposites
Authors
Qi-Lin Lu
Jiayin Wu
Yonggui Li
Lu Li
Biao Huang
Publication date
15-04-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06085-9

Other articles of this Issue 21/2021

Journal of Materials Science 21/2021 Go to the issue

Premium Partners