Skip to main content
Top

2021 | OriginalPaper | Chapter

8. Optical and Electrical Properties of Transition Metal Dichalcogenides (Monolayer and Bulk)

Authors : Alain Diebold, Tino Hofmann

Published in: Optical and Electrical Properties of Nanoscale Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we discuss the electronic band structure, electrical, and optical properties of transition metal dichalcogenides. The different crystallographic structures for transition metal dichalcogenides are presented along with a discussion of the chemical bonding. Many of the transition metal dichalcogenides consist of van der Waals bonded monolayers where the monolayers consist of trilayers with a transition metal atom layer between a top and bottom chalcogenide layer. Often these monolayers have a trigonal prismatic arrangement of chalcogenide atoms around the metal atoms. A tight binding model for three of the \(d\) orbitals of the transition metal atoms provides a useful description of the highest energy valence band and lowest energy conduction bands of trigonal prismatic monolayer transition metal dichalcogenide. The impact of spin orbit coupling on the band structure is shown. We discuss how the electronic band structure due to the honeycomb lattice of many transition metal dichalcogenides monolayers interacts with spin orbit coupling resulting in differences in optical transitions between the \(K\) and \(K^{\prime}\) locations in the Brillouin zone. We present photoluminescence spectra demonstrating these differences. We also show theoretical and experimental dielectric function data for a variety of monolayer, multilayer, and bulk transition metal dichalcogenides. We show how Raman spectroscopy is sensitive to the layer structure. We also discuss the observation of superconductivity of TMD materials. A summary of the point group and space group symmetry and Raman Tensors of transition metal dichalcogenides is provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRef M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRef
2.
go back to reference H. Zeng, X. Cui, An optical spectroscopic study on two dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 44, 2629–2642 (2015)CrossRef H. Zeng, X. Cui, An optical spectroscopic study on two dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 44, 2629–2642 (2015)CrossRef
3.
go back to reference A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRef A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRef
4.
go back to reference W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J.T. Sadowski, A. Al-Mahboob, A.M. van der Zande, D.A. Chenet, J.I. Dadap, I.P. Herman, P. Sutter, J. Hone, R.M. Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. J. Phys. Rev. Lett. 111, 106801 (2013) W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J.T. Sadowski, A. Al-Mahboob, A.M. van der Zande, D.A. Chenet, J.I. Dadap, I.P. Herman, P. Sutter, J. Hone, R.M. Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. J. Phys. Rev. Lett. 111, 106801 (2013)
5.
go back to reference A.V. Kolobov, J. Tominaga, Electronic band structure of 2D TMDCs, Chap. 6 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 165–226. See p. 198 A.V. Kolobov, J. Tominaga, Electronic band structure of 2D TMDCs, Chap. 6 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 165–226. See p. 198
6.
go back to reference M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Optical and electrical properties of two dimensional layered materials. Nanophotonics 5, 111–125 (2016) M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Optical and electrical properties of two dimensional layered materials. Nanophotonics 5, 111–125 (2016)
7.
go back to reference G.-B. Liu, D. Xiao, X. Xu, W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643 (2015)CrossRef G.-B. Liu, D. Xiao, X. Xu, W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643 (2015)CrossRef
8.
go back to reference A.N. Enyashin, G. Seifert, Electronic properties of MoS2 monolayer and related structures. Nanosyst.: Phys. Chem. Math. 5, 517–539 (2014) A.N. Enyashin, G. Seifert, Electronic properties of MoS2 monolayer and related structures. Nanosyst.: Phys. Chem. Math. 5, 517–539 (2014)
9.
go back to reference C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013) C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013)
10.
go back to reference A.V. Kolobov, J. Tominaga, Bulk TMDCs: review of structure and properties, Chap. 3 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 29–77 A.V. Kolobov, J. Tominaga, Bulk TMDCs: review of structure and properties, Chap. 3 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 29–77
11.
go back to reference G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). For plots of the 3 Band solution from Liu, et al., see L. Szulakowska, Studies of electronic properties of atomically thin nanostructures with tight-binding model and DFT methods. Master’s Thesis, Wydział Podstawowych Problemów Techniki G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). For plots of the 3 Band solution from Liu, et al., see L. Szulakowska, Studies of electronic properties of atomically thin nanostructures with tight-binding model and DFT methods. Master’s Thesis, Wydział Podstawowych Problemów Techniki
12.
go back to reference J.Á. Silva-Guillén, P. San-Jose, R. Roldán, Electronic band structure of transition metal dichalcogenides from ab initio and Slater-Koster tight-binding model. Appl. Sci. 6, 284 (2016)CrossRef J.Á. Silva-Guillén, P. San-Jose, R. Roldán, Electronic band structure of transition metal dichalcogenides from ab initio and Slater-Koster tight-binding model. Appl. Sci. 6, 284 (2016)CrossRef
13.
go back to reference M.D. Jaffee, J. Singh, Inclusion of spin orbit coupling into tight binding band structure calculations for bulk and superlattice semiconductors. Solid State Commun. 62, 399–402 (1987)CrossRef M.D. Jaffee, J. Singh, Inclusion of spin orbit coupling into tight binding band structure calculations for bulk and superlattice semiconductors. Solid State Commun. 62, 399–402 (1987)CrossRef
14.
go back to reference F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015)CrossRef F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015)CrossRef
15.
go back to reference K. Kosmider, J.W. Gonzalez, J. Fernandez-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013) K. Kosmider, J.W. Gonzalez, J. Fernandez-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013)
16.
go back to reference X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)CrossRef X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)CrossRef
17.
go back to reference K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012)CrossRef K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012)CrossRef
18.
go back to reference D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)CrossRef D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)CrossRef
19.
go back to reference D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012) D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)
20.
go back to reference M.-C. Chang, Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 710–7023 (1996)CrossRef M.-C. Chang, Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 710–7023 (1996)CrossRef
21.
go back to reference T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Comm. 3, 887 (2012)CrossRef T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Comm. 3, 887 (2012)CrossRef
22.
go back to reference D.Y. Qiu, F.H. da Jornada, S.G. Louie, Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013) D.Y. Qiu, F.H. da Jornada, S.G. Louie, Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013)
23.
go back to reference M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S.G. Louie, M.F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)CrossRef M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S.G. Louie, M.F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)CrossRef
24.
go back to reference B. Zhu, X. Chen, X. Cui, Exciton binding energy of monolayer WS2, Nat. Sci. Rep. 17, 9218 (2015) B. Zhu, X. Chen, X. Cui, Exciton binding energy of monolayer WS2, Nat. Sci. Rep. 17, 9218 (2015)
25.
go back to reference H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014) H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014)
26.
go back to reference S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)CrossRef S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)CrossRef
27.
go back to reference W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013) W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)
28.
go back to reference J. He, K. Hummer, C. Franchini, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014) J. He, K. Hummer, C. Franchini, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014)
29.
go back to reference H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Nat. Sci. Rep. 3, 1608 (2013) H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Nat. Sci. Rep. 3, 1608 (2013)
30.
go back to reference A. Stan, N.E. Dahlen, R. van Leeuwen, Levels of self-consistency in the GW approximation. J. Chem. Phys. 130, 114105 (2009) A. Stan, N.E. Dahlen, R. van Leeuwen, Levels of self-consistency in the GW approximation. J. Chem. Phys. 130, 114105 (2009)
31.
go back to reference W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H. Castro Neto, G. Eda, Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013) W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H. Castro Neto, G. Eda, Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013)
32.
go back to reference L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D.A. Rhodes, C. Tan, M. Claassen, D.M. Kennes, Y. Bai, B. Kim, K. Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. Pasupathy, C.R. Dean, Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020)CrossRef L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D.A. Rhodes, C. Tan, M. Claassen, D.M. Kennes, Y. Bai, B. Kim, K. Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. Pasupathy, C.R. Dean, Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020)CrossRef
33.
go back to reference S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 14, 5500 (2014)CrossRef S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 14, 5500 (2014)CrossRef
34.
go back to reference A.M. van der Zande, J. Kunstmann, A. Chernikov, D.A. Chenet, Y.-M. You, X.X. Zhang, P.Y. Huang, T.C. Berkelbach, L. Wang, F. Zhang, M.S. Hybertsen, D.A. Muller, D.R. Reichman, T.F. Heinz, J.C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014)CrossRef A.M. van der Zande, J. Kunstmann, A. Chernikov, D.A. Chenet, Y.-M. You, X.X. Zhang, P.Y. Huang, T.C. Berkelbach, L. Wang, F. Zhang, M.S. Hybertsen, D.A. Muller, D.R. Reichman, T.F. Heinz, J.C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014)CrossRef
35.
go back to reference C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J.G. Lunney, G.S. Duesberg, Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104, 103114 (2014) C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J.G. Lunney, G.S. Duesberg, Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104, 103114 (2014)
36.
go back to reference S.M. Eichfeld, C.M. Eichfeld, Y-C Lin, L. Hossain, J.A. Robinson, Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Mater. 2, 092508 (2014) S.M. Eichfeld, C.M. Eichfeld, Y-C Lin, L. Hossain, J.A. Robinson, Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Mater. 2, 092508 (2014)
37.
go back to reference A.R. Beal, H.P. Hughes, W.Y. Liang, The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C: Sol. Stat. Phys. 8, 4236–4248 (1975) A.R. Beal, H.P. Hughes, W.Y. Liang, The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C: Sol. Stat. Phys. 8, 4236–4248 (1975)
38.
go back to reference A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 9, 2449–2457 (1976) A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 9, 2449–2457 (1976)
39.
go back to reference A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 12, 881–890 (1979) A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 12, 881–890 (1979)
40.
go back to reference M.M. Benameur, B. Radisavljevic, J.S. Héron, S. Sahoo, H. Berger, A. Kis, Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011) M.M. Benameur, B. Radisavljevic, J.S. Héron, S. Sahoo, H. Berger, A. Kis, Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011)
41.
go back to reference C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695 (2010)CrossRef C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695 (2010)CrossRef
42.
go back to reference P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)CrossRef P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)CrossRef
43.
go back to reference N. Scheuschner, R. Gillen, M. Staiger, J. Maultzsch, Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 91, 235409 (2015) N. Scheuschner, R. Gillen, M. Staiger, J. Maultzsch, Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 91, 235409 (2015)
44.
go back to reference A.V. Kolobov, J. Tominaga, Raman scattering of 2D TMDCs, Chap. 7 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 227–294 A.V. Kolobov, J. Tominaga, Raman scattering of 2D TMDCs, Chap. 7 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 227–294
45.
go back to reference Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013)CrossRef Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013)CrossRef
46.
go back to reference X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law, H. Berger, Ising pairing in superconducting NbSe2 atomic layers. L. Nat. Phys. 12, 138–144 (2015) X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law, H. Berger, Ising pairing in superconducting NbSe2 atomic layers. L. Nat. Phys. 12, 138–144 (2015)
47.
go back to reference S.M. Nie, Z. Song, H. Weng, Z. Fang, Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Phys. Rev. B 91, 235434 (2015) S.M. Nie, Z. Song, H. Weng, Z. Fang, Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Phys. Rev. B 91, 235434 (2015)
48.
go back to reference H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012) H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012)
49.
go back to reference N.F.Q. Yuan, B.T. Zhou, W.-Y. He, K.T. Law, Ising superconductivity in transition metal dichalcogenides. AAPPS Bul. 26, 12–19 (2016) N.F.Q. Yuan, B.T. Zhou, W.-Y. He, K.T. Law, Ising superconductivity in transition metal dichalcogenides. AAPPS Bul. 26, 12–19 (2016)
50.
go back to reference Y. Saito, Y. Nakamura, M.S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa, Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–150 (2016)CrossRef Y. Saito, Y. Nakamura, M.S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa, Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–150 (2016)CrossRef
51.
go back to reference W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015)CrossRef W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015)CrossRef
52.
go back to reference E. Sohn, X. Xi, W.-Y. He, S. Jiang, Z. Wang, K. Kang, J.-H. Park, H. Berger, L. Forró, K.T. Law, J. Shan, K.F. Mak, An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe2. Nat. Mater. 17, 504–509 (2015). https://doi.org/10.1038/s41563-018-0061-1 and supplemental E. Sohn, X. Xi, W.-Y. He, S. Jiang, Z. Wang, K. Kang, J.-H. Park, H. Berger, L. Forró, K.T. Law, J. Shan, K.F. Mak, An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe2. Nat. Mater. 17, 504–509 (2015). https://​doi.​org/​10.​1038/​s41563-018-0061-1 and supplemental
53.
go back to reference R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Erlangen, 2003), Chapter 6 R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Erlangen, 2003), Chapter 6
54.
go back to reference D.A. Rhodes, A. Jindal, N.F.Q. Yuan, Y. Jung, A. Antony, H. Wang, B. Kim, Y.-c. Chiu, T. Taniguchi, K. Watanabe, K. Barmak, L. Balicas, C.R. Dean, X. Qian, L. Fu, A.N. Pasupathy, J. Hone, Enhanced superconductivity in monolayer Td‑MoTe2. Nano Lett. 21, 2505−2511 (2021) D.A. Rhodes, A. Jindal, N.F.Q. Yuan, Y. Jung, A. Antony, H. Wang, B. Kim, Y.-c. Chiu, T. Taniguchi, K. Watanabe, K. Barmak, L. Balicas, C.R. Dean, X. Qian, L. Fu, A.N. Pasupathy, J. Hone, Enhanced superconductivity in monolayer Td‑MoTe2. Nano Lett. 21, 2505−2511 (2021)
55.
go back to reference E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J.A. Folk, D.H. Cobden, Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018)CrossRef E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J.A. Folk, D.H. Cobden, Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018)CrossRef
56.
go back to reference J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications (Springer, Switzerland, 2016), pp. 3–64 J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications (Springer, Switzerland, 2016), pp. 3–64
58.
go back to reference A. Eckmann, J. Park, H. Yang, D. Elias, A.S. Mayorov, G. Yu, R. Jalil, K.S. Novoselov, R.V. Gorbachev, M. Lazzeri, A.K. Geim, C. Casiraghi, Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013)CrossRef A. Eckmann, J. Park, H. Yang, D. Elias, A.S. Mayorov, G. Yu, R. Jalil, K.S. Novoselov, R.V. Gorbachev, M. Lazzeri, A.K. Geim, C. Casiraghi, Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013)CrossRef
59.
go back to reference R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, C.R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018)CrossRef R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, C.R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018)CrossRef
60.
go back to reference A.J. Green, A.C. Diebold, Thickness and rotational effects in simulated HRTEM images of graphene on hexagonal boron nitride. Microsc. Microanal. 20, 1753–1763 (2014)CrossRef A.J. Green, A.C. Diebold, Thickness and rotational effects in simulated HRTEM images of graphene on hexagonal boron nitride. Microsc. Microanal. 20, 1753–1763 (2014)CrossRef
61.
go back to reference B.K. Choi, S. Ulstrup, S.M. Gunasekera, J. Kim, S.Y. Lim, L. Moreschini, J.S. Oh, S.-H. Chun, C. Jozwiak, A. Bostwick, E. Rotenberg, H. Cheong, I.-W. Lyo, M. Mucha-Kruczynski, Y.J. Chang, Visualizing orbital content of electronic bands in anisotropic 2D semiconducting ReSe2. ACS Nano 14, 7880–7891 (2020)CrossRef B.K. Choi, S. Ulstrup, S.M. Gunasekera, J. Kim, S.Y. Lim, L. Moreschini, J.S. Oh, S.-H. Chun, C. Jozwiak, A. Bostwick, E. Rotenberg, H. Cheong, I.-W. Lyo, M. Mucha-Kruczynski, Y.J. Chang, Visualizing orbital content of electronic bands in anisotropic 2D semiconducting ReSe2. ACS Nano 14, 7880–7891 (2020)CrossRef
62.
go back to reference G.A. Ermolaev, D.I. Yakubovsky, Y.V. Stebunov, A.V. Arsenin, V.S. Volkov, Spectral ellipsometry of monolayer transition metal dichalcogenides: analysis of excitonic peaks in dispersion. J. Vac. Sci. Technol. B 38, 014002 (2020) G.A. Ermolaev, D.I. Yakubovsky, Y.V. Stebunov, A.V. Arsenin, V.S. Volkov, Spectral ellipsometry of monolayer transition metal dichalcogenides: analysis of excitonic peaks in dispersion. J. Vac. Sci. Technol. B 38, 014002 (2020)
63.
go back to reference J. Ribeiro-Soares, R.M. Almeida, E B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cançado, A. Jorio, Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014) J. Ribeiro-Soares, R.M. Almeida, E B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cançado, A. Jorio, Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014)
64.
go back to reference A.H. Barajas-Aguilar, J.C. Irwin, A.M. Garay-Tapia, T.Schwarz, F. Paraguay Delgado, P.M. Brodersen, R. Prinja, N. Kherani, S.J. Jiménez Sandoval, Crystalline structure, electronic and lattice-dynamics properties of NbTe2. Sci. Rep. 8, 16984 (2018) A.H. Barajas-Aguilar, J.C. Irwin, A.M. Garay-Tapia, T.Schwarz, F. Paraguay Delgado, P.M. Brodersen, R. Prinja, N. Kherani, S.J. Jiménez Sandoval, Crystalline structure, electronic and lattice-dynamics properties of NbTe2. Sci. Rep. 8, 16984 (2018)
65.
go back to reference B.E. Brown, The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966)CrossRef B.E. Brown, The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966)CrossRef
67.
go back to reference J.C. Wildervanck, F. Jellinek, The dichalcogenides of technetium and rhenium. J. Less Common Met. 24, 73–81 (1971)CrossRef J.C. Wildervanck, F. Jellinek, The dichalcogenides of technetium and rhenium. J. Less Common Met. 24, 73–81 (1971)CrossRef
68.
go back to reference E.J. Sie, C.M. Nyby, C.D. Pemmaraju, S.J. Park, X. Shen, J. Yang, M.C. Hoffmann, B.K. Ofori-Okai, R. Li, A.H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T.P. Devereaux, T.F. Heinz, X. Wang, A.M. Lindenberg, An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019)CrossRef E.J. Sie, C.M. Nyby, C.D. Pemmaraju, S.J. Park, X. Shen, J. Yang, M.C. Hoffmann, B.K. Ofori-Okai, R. Li, A.H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T.P. Devereaux, T.F. Heinz, X. Wang, A.M. Lindenberg, An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019)CrossRef
69.
go back to reference X. Ma, P. Guo, C. Yi, Q. Yu, A. Zhang, J. Ji, Y. Tian, F. Jin, Y. Wang, K. Liu, T. Xia, Y. Shi, Q. Zhang, Raman scattering in the transition-metal dichalcogenides of 1T-MoTe2, Td-MoTe2, and Td-WTe2. Phys. Rev. B 94, 214105 (2016) X. Ma, P. Guo, C. Yi, Q. Yu, A. Zhang, J. Ji, Y. Tian, F. Jin, Y. Wang, K. Liu, T. Xia, Y. Shi, Q. Zhang, Raman scattering in the transition-metal dichalcogenides of 1T-MoTe2, Td-MoTe2, and Td-WTe2. Phys. Rev. B 94, 214105 (2016)
Metadata
Title
Optical and Electrical Properties of Transition Metal Dichalcogenides (Monolayer and Bulk)
Authors
Alain Diebold
Tino Hofmann
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80323-0_8