Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Optical Emission Spectra of Phthalocyanines

Author : Hiroaki Isago

Published in: Optical Spectra of Phthalocyanines and Related Compounds

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, optical emission phenomena involving phthalocyanine derivatives and the related macrocyclic compounds are described. In particular, we focus on the fluorescence emitted from the macrocyclic ligand with a brief discussion of other emission phenomena (e.g., phosphorescence, delayed fluorescence, electro-chemiluminescence). Unlike optical absorption, not all macrocyclic compounds luminesce. In this chapter, the factors that cause macrocyclic dyes to be luminescent or nonluninescent are described. Furthermore, we focus on the aggregation and acid-base equilibrium involving these compounds in detail because these phenomena are frequently misunderstood.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
From the Frank-Condon principle (see Sect. 1.​1.​3).
 
2
As the S1 → S0 transition is an allowed process, the emission promptly occurs.
 
3
The transition from S1 (v = 0) to S0 (v = 0) is referred to as a 0–0 transition, in common with optical absorption.
 
4
Not all metal complexes are fluorescent (Sect. 4.1.3.2).
 
5
Otherwise, the emission is from another substance, such as an impurity (Sect. 4.1.5).
 
6
The appearance of a single peak in the emission spectra of metal-free derivatives can occasionally give rise to a serious misinterpretation as mentioned later (Sect. 4.1.5).
 
7
Some high-spec spectrometers can directly determine quantum yield values using an integrating sphere (also known as an Ulbricht sphere).
 
8
See Fig. 1.​12 for the α and β positions.
 
9
Fluorescence data for the same naphthalocyanine derivative in pyridine are reported in the same reference [24]. However, these data are not cited in this work because of the dissimilarity of the excitation spectrum to the absorption spectrum in the same solvent and the appearance of the emission peak at a much shorter wavelength (749.8 nm) than absorption peak (783.6 nm); see Sect. 4.1.5.
 
10
Readers are reminded that Q band of porphyrins (an electronic transition to the lowest excited state) is weak not because the transition is forbidden but configuration interaction between the two kinds of one-electron transitions involving the nearly degenerate HOMOs and LUMO significantly reduced the magnitude of the electric dipole moment in the lowest excited state (Sect. 2.​2.​6). As optical emission is the most likely to occur from the lowest excited (S1) state (Kasha’ rule; Sect. 4.1.1), it is quite reasonable that the most intense fluorescence from porphyrins is observed near the Q band. Note that this is not saying that no emission is observed near their Soret band. Actually, weak emission can be observed at the red flank of Soret band under appropriate conditions [43, 44] [i.e., emission from the S2 state; cf. see S2 emission from metal-free phthalocyanines (Fig. 4.7)]. Unlike the violet emission from phthalocyanines (Sect. 4.2.4), the corresponding excitation spectrum is similar to the Soret band.
 
11
This usually occurs when the metal ion is labile and hence liable to leave the cavity (e.g., the known SbIII complex [8]) or when it is difficult to remove the unreacted free base from its metal complex through the synthetic procedure.
 
12
Actually, the emission peak appears at a slightly longer wavelength, and the magnitude of the difference may be considered as being reasonably close to the Stokes shift.
 
13
It was later found that emission could not be detected when the SbIII complex was very carefully purified [8].
 
14
Fortunately, the Q-band position of the SbIII complex is significantly red shifted relative to those of the other metal complexes [8].
 
15
Some authors have attempted to attribute the appearance of free-base-like excitation spectra to the demetallation of the photoexcited molecule followed by the protonation of the macrocyclic ligand in its cavity. Although this possibility cannot be completely excluded, it is unlikely because the two successive chemical steps must be completed within picoseconds before the initiation of the optical emission. If the assumed reactions do occur, continuous photoirradiation will increase the ratio of the corresponding free base to the bulk complex during irradiation.
 
16
Phosphorescence of the zinc derivative had been reported in their earlier work [32], but this was later reassigned as an artifact by the same group [29].
 
17
Emission from 1O2 around 1270 nm is mentioned in Sect. 4.2.3.
 
18
As far as phthalocyanines and related macrocyclic compounds are concerned, their application to such devices appears to be unpromising because the energy gap between S1 and T1 is too large to thermally excite triplet molecules.
 
19
The weak emission may have been due to poor solubility and strong aggregation of the macrocyclic compound in the solvent.
 
20
It is noteworthy that only a few systems have been reported with the ECL peak position at a longer wavelength than the nc system despite more than three decades having passed since this work was published [6264].
 
Literature
1.
go back to reference N. Kobayashi, Y. Higashi, T. Osa, Chem. Lett. 1813–1816 (1994) N. Kobayashi, Y. Higashi, T. Osa, Chem. Lett. 1813–1816 (1994)
2.
3.
go back to reference H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013)CrossRef H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013)CrossRef
4.
5.
6.
8.
9.
go back to reference K. Ishii, N. Kobayashi, in The Porphyrin Handbook, vol. 16, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, San Diego, 2003), pp. 1–42 K. Ishii, N. Kobayashi, in The Porphyrin Handbook, vol. 16, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, San Diego, 2003), pp. 1–42
11.
go back to reference P.S. Vincett, E.M. Voigt, K.E. Rieckoff, J. Chem. Phys. 55, 4131–4140 (1971)CrossRef P.S. Vincett, E.M. Voigt, K.E. Rieckoff, J. Chem. Phys. 55, 4131–4140 (1971)CrossRef
12.
go back to reference N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1638 (1995)CrossRef N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1638 (1995)CrossRef
13.
14.
go back to reference H. Ohtani, Y. Kobayashi, T. Ohno, S. Kato, T. Tanno, A. Yamada, J. Phys. Chem. 88, 4431–4435 (1984)CrossRef H. Ohtani, Y. Kobayashi, T. Ohno, S. Kato, T. Tanno, A. Yamada, J. Phys. Chem. 88, 4431–4435 (1984)CrossRef
15.
go back to reference R. Darwent, P. Douglas, A. Harriman, G. Ported, M.C. Richoux, Coord. Chem. Rev. 44, 83–126 (1982)CrossRef R. Darwent, P. Douglas, A. Harriman, G. Ported, M.C. Richoux, Coord. Chem. Rev. 44, 83–126 (1982)CrossRef
17.
18.
19.
go back to reference E.R. Menzel, K.E. Rieckhoff, E.M. Voigt, J. Chem. Phys. 58, 5726–5734 (1973)CrossRef E.R. Menzel, K.E. Rieckhoff, E.M. Voigt, J. Chem. Phys. 58, 5726–5734 (1973)CrossRef
20.
go back to reference A.P. Pelliccioli, K. Henbest, G. Kwag, T.R. Carvagno, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 105, 1757–1766 (2001)CrossRef A.P. Pelliccioli, K. Henbest, G. Kwag, T.R. Carvagno, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 105, 1757–1766 (2001)CrossRef
23.
24.
go back to reference N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004)CrossRef N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004)CrossRef
25.
go back to reference W. Freyer, S. Dahne, L. Q. Minh, K. Teuchner, Z. Chem. 334–336 (1986) W. Freyer, S. Dahne, L. Q. Minh, K. Teuchner, Z. Chem. 334–336 (1986)
26.
go back to reference K. Ishi, Y. Hirose, M. Fujitsuka, O. Ito, N. Kobayashi, J. Am. Chem. Soc. 123, 702–708 (2001)CrossRef K. Ishi, Y. Hirose, M. Fujitsuka, O. Ito, N. Kobayashi, J. Am. Chem. Soc. 123, 702–708 (2001)CrossRef
28.
go back to reference D. Guez, D. Markovitsi, M. Sommerauer, M. Hanack, Chem. Phys. Lett. 249, 309–313 (1996)CrossRef D. Guez, D. Markovitsi, M. Sommerauer, M. Hanack, Chem. Phys. Lett. 249, 309–313 (1996)CrossRef
29.
go back to reference B.D. Richter, M.E. Kenny, W.E. Ford, M.A. Rodgers, J. Am. Chem. Soc. 112, 8064–8070 (1990)CrossRef B.D. Richter, M.E. Kenny, W.E. Ford, M.A. Rodgers, J. Am. Chem. Soc. 112, 8064–8070 (1990)CrossRef
30.
go back to reference N. Kobayashi, H. Ogata, N. Nonaka, E.A. Luk’yanets, Chem. Eur. J. 9, 5123–5134 (2003)CrossRef N. Kobayashi, H. Ogata, N. Nonaka, E.A. Luk’yanets, Chem. Eur. J. 9, 5123–5134 (2003)CrossRef
31.
go back to reference T.C. Gunaratne, A.V. Gusev, C. Rizzoli, X. Peng, A. Rosa, G. Ricciardi, E.J. Baerends, C. Rizzoli, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 109, 2078–2089 (2005)CrossRef T.C. Gunaratne, A.V. Gusev, C. Rizzoli, X. Peng, A. Rosa, G. Ricciardi, E.J. Baerends, C. Rizzoli, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 109, 2078–2089 (2005)CrossRef
32.
go back to reference A.V. Soldatova, J. Kim, C. Rizzoli, M.E. Kenney, M.A. Rodgers, A. Rosa, G. Ricciardi, Inorg. Chem. 50, 1135–1149 (2011)CrossRef A.V. Soldatova, J. Kim, C. Rizzoli, M.E. Kenney, M.A. Rodgers, A. Rosa, G. Ricciardi, Inorg. Chem. 50, 1135–1149 (2011)CrossRef
33.
34.
go back to reference H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008)CrossRef H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008)CrossRef
35.
go back to reference E.M. Kober, J.V. Capsar, R.S. Lumpkin, T.J. Meyer, J. Phys. Chem. 90, 3722–3734 (1986) E.M. Kober, J.V. Capsar, R.S. Lumpkin, T.J. Meyer, J. Phys. Chem. 90, 3722–3734 (1986)
36.
go back to reference M. Bixon, J. Jortner, J. Cortes, H. Heitele, M.E. Michel-Beyerle, J. Phys. Chem. 98, 7289–7299 (1994)CrossRef M. Bixon, J. Jortner, J. Cortes, H. Heitele, M.E. Michel-Beyerle, J. Phys. Chem. 98, 7289–7299 (1994)CrossRef
37.
go back to reference T. Fukuda, N. Kobayashi, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001)CrossRef T. Fukuda, N. Kobayashi, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001)CrossRef
39.
go back to reference A. Beeby, S. FitzGerald, C.F. Stanley, J. Chem. Soc. Perkin Trans. 2, 1978–1982 (2001) A. Beeby, S. FitzGerald, C.F. Stanley, J. Chem. Soc. Perkin Trans. 2, 1978–1982 (2001)
40.
go back to reference N. Kobayashi, T. Ishizaki, K. Ishi, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999)CrossRef N. Kobayashi, T. Ishizaki, K. Ishi, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999)CrossRef
42.
43.
go back to reference L. Bajema, M. Gouterman, C.B. Rose, J. Mol. Spectrosc. 39, 421–431 (1971) L. Bajema, M. Gouterman, C.B. Rose, J. Mol. Spectrosc. 39, 421–431 (1971)
44.
go back to reference J. Karolczak, D. Kowalska, A. Lukaszewicz, A. Maciejewski, R.P. Steer, J. Phys. Chem. A 108, 4570–4575 (2004)CrossRef J. Karolczak, D. Kowalska, A. Lukaszewicz, A. Maciejewski, R.P. Steer, J. Phys. Chem. A 108, 4570–4575 (2004)CrossRef
45.
go back to reference L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996)CrossRef L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996)CrossRef
46.
go back to reference O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989)CrossRef O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989)CrossRef
47.
go back to reference T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996) T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996)
49.
go back to reference K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. 44, 4763–4766 (2005)CrossRef K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. 44, 4763–4766 (2005)CrossRef
50.
go back to reference E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985)CrossRef E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985)CrossRef
51.
go back to reference W.E. Ford, B.D. Richter, M.E. Kenney, M.A.J. Rodgers, Photochem. Photobiol. 50, 277–282 (1989)CrossRef W.E. Ford, B.D. Richter, M.E. Kenney, M.A.J. Rodgers, Photochem. Photobiol. 50, 277–282 (1989)CrossRef
52.
go back to reference W. Freyer, H. Stiel, M. Hild, K. Teuchner, D. Leupold, Photochem. Photobiol. 66, 596–604 (1997)CrossRef W. Freyer, H. Stiel, M. Hild, K. Teuchner, D. Leupold, Photochem. Photobiol. 66, 596–604 (1997)CrossRef
53.
go back to reference D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980)CrossRef D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980)CrossRef
54.
go back to reference M. Scholz, R. Dědic, T. Breitenbach, J. Hála, Photochem. Photobiol. Sci. 12, 1873–1884 (2013)CrossRef M. Scholz, R. Dědic, T. Breitenbach, J. Hála, Photochem. Photobiol. Sci. 12, 1873–1884 (2013)CrossRef
56.
57.
go back to reference A.A. Goman, I. Hamblett, T.J. Hill, J. Am. Chem. Soc. 117, 10751–10752 (1995)CrossRef A.A. Goman, I. Hamblett, T.J. Hill, J. Am. Chem. Soc. 117, 10751–10752 (1995)CrossRef
58.
go back to reference Y. Fu, A.A. Krasnovsky Jr, C.S. Foote, J. Phys. Chem. A 101, 2552–2554 (1997)CrossRef Y. Fu, A.A. Krasnovsky Jr, C.S. Foote, J. Phys. Chem. A 101, 2552–2554 (1997)CrossRef
59.
go back to reference S.T. Murphy, K. Kondo, C.S. Foote, J. Am. Chem. Soc. 121, 3751–3755 (1999)CrossRef S.T. Murphy, K. Kondo, C.S. Foote, J. Am. Chem. Soc. 121, 3751–3755 (1999)CrossRef
60.
go back to reference H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492, 234–238 (2012)CrossRef H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492, 234–238 (2012)CrossRef
61.
62.
go back to reference S. Muralidharan, G. Ferraudi, L.K. Patterson, Inorg. Chim. Acta 65, L235–L236 (1982)CrossRef S. Muralidharan, G. Ferraudi, L.K. Patterson, Inorg. Chim. Acta 65, L235–L236 (1982)CrossRef
63.
go back to reference Y. Kaneko, Y. Nishimura, N. Takane, T. Arai, H. Sakuragi, N. Kobayashi, D. Matsunaga, C. Pac, K. Tokumaru, J. Photochem. Photobiol. A 106, 177–183 (1997)CrossRef Y. Kaneko, Y. Nishimura, N. Takane, T. Arai, H. Sakuragi, N. Kobayashi, D. Matsunaga, C. Pac, K. Tokumaru, J. Photochem. Photobiol. A 106, 177–183 (1997)CrossRef
67.
go back to reference N.E. Tokel, C.P. Keszthelyi, A.J. Bard, J. Am. Chem. Soc. 94, 4872–4877 (1972)CrossRef N.E. Tokel, C.P. Keszthelyi, A.J. Bard, J. Am. Chem. Soc. 94, 4872–4877 (1972)CrossRef
68.
go back to reference B.L. Wheeler, G. Nagasubramanian, A.J. Bard, L.A. Schechtman, D.R. Dininny, M.E. Kenney, J. Am. Chem. Soc. 106, 7404–7410 (1984)CrossRef B.L. Wheeler, G. Nagasubramanian, A.J. Bard, L.A. Schechtman, D.R. Dininny, M.E. Kenney, J. Am. Chem. Soc. 106, 7404–7410 (1984)CrossRef
Metadata
Title
Optical Emission Spectra of Phthalocyanines
Author
Hiroaki Isago
Copyright Year
2015
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55102-7_4

Premium Partners