Skip to main content
Top
Published in: Optical and Quantum Electronics 4/2023

01-04-2023

Optical soliton solutions to the time-fractional Kundu–Eckhaus equation through the \((G^{\prime}/G,1/G)\)-expansion technique

Authors: M. Ali Akbar, Farah Aini Abdullah, Mst. Munny Khatun

Published in: Optical and Quantum Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present research focuses on fractional nonlinear evolution equations and their optical soliton solutions, which have become the inquisitive context to study their significant attributes in understanding natural kernels ascending in the field of science and technology. This article has been dedicated to searching out the analytical soliton solution of an important fractional nonlinear evolution equation, named the time-fractional Kundu–Eckhaus equation in the sense of beta fractional derivative through the (\(G^{\prime}/G, 1/G\))-expansion approach. This equation was originated to search out the transmission of data through the optical fiber. By exerting the stated method, abundant novel soliton solutions, like kink soliton, compacton, periodic soliton, singular periodic, singular bell-shaped soliton, and others have been established. In accordance with the trail solutions generated in this method, the solutions contain arbitrary parameters and hyperbolic, rational, and trigonometric functions. Soliton solutions are extracted from analytical solutions for apposite values of the parameters. Contour, three- and two-dimensional graphs are plotted to demonstrate the physical structure and characteristics of the attained solitons. The obtained results imply that the concerned method can be used to attain diverse, improved, useful, and compatible solutions for other significant fractional nonlinear evolution equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acan, O., Baleanu, D.: A new numerical technique for solving fractional partial differential equations. arXiv Preprint arXiv:1704.02575 (2017) Acan, O., Baleanu, D.: A new numerical technique for solving fractional partial differential equations. arXiv Preprint arXiv:1704.02575 (2017)
go back to reference Ahmed, H.M., Rabie, W.B., Ragusa, M.A.: Optical solitons and other solutions to Kaup–Newell equation with Jacobi elliptic function expansion method. Anal. Math. Phys. 11(1), 1–16 (2021)MathSciNetMATH Ahmed, H.M., Rabie, W.B., Ragusa, M.A.: Optical solitons and other solutions to Kaup–Newell equation with Jacobi elliptic function expansion method. Anal. Math. Phys. 11(1), 1–16 (2021)MathSciNetMATH
go back to reference Ahmed, M.S., Zaghrout, A.A.S., Ahmed, H.M.: Travelling wave solutions for the doubly dispersive equation using improved modified tanh-function method. Alex. Eng. J. 61(10), 7987–7994 (2022a) Ahmed, M.S., Zaghrout, A.A.S., Ahmed, H.M.: Travelling wave solutions for the doubly dispersive equation using improved modified tanh-function method. Alex. Eng. J. 61(10), 7987–7994 (2022a)
go back to reference Ahmed, H., Khan, T.A., Stanimirovic, P.S., Shatanawi, W., Botmart, T.: New approach on conventional solutions to nonlinear partial differential equations describing physical phenomena. Results Phys. 41, 1–13 (2022b) Ahmed, H., Khan, T.A., Stanimirovic, P.S., Shatanawi, W., Botmart, T.: New approach on conventional solutions to nonlinear partial differential equations describing physical phenomena. Results Phys. 41, 1–13 (2022b)
go back to reference Akbar, M.A., Ali, N.H., Zayed, E.: A generalized and improved (G′⁄G,1/G)-expansion method for nonlinear evolution equations. Math. Probl. Eng. 2012, 1–22 (2012)MathSciNetMATH Akbar, M.A., Ali, N.H., Zayed, E.: A generalized and improved (G′⁄G,1/G)-expansion method for nonlinear evolution equations. Math. Probl. Eng. 2012, 1–22 (2012)MathSciNetMATH
go back to reference Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(3), 876–882 (2018)MathSciNetMATH Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(3), 876–882 (2018)MathSciNetMATH
go back to reference Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 252, 1–10 (2022) Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 252, 1–10 (2022)
go back to reference Alam, L.M.B., Jiang, X., Maun, A.A.: Exact and explicit travelling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equation using the modified extended tanh-function method in mathematical physics. Partial Differ. Equ. Appl. Math. 4, 1–11 (2021) Alam, L.M.B., Jiang, X., Maun, A.A.: Exact and explicit travelling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equation using the modified extended tanh-function method in mathematical physics. Partial Differ. Equ. Appl. Math. 4, 1–11 (2021)
go back to reference Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)ADSMathSciNetMATH Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)ADSMathSciNetMATH
go back to reference Alquran, M.: Solitons and periodic solutions to nonlinear partial differential equations by the sine–cosine method. Appl. Math. Inf. Sci. 6(1), 85–88 (2012)MathSciNetMATH Alquran, M.: Solitons and periodic solutions to nonlinear partial differential equations by the sine–cosine method. Appl. Math. Inf. Sci. 6(1), 85–88 (2012)MathSciNetMATH
go back to reference Aniqa, A., Ahmad, J.: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient (GG’)-expansion method. Ain Shams Eng. J. 13, 1–23 (2022) Aniqa, A., Ahmad, J.: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient (GG’)-expansion method. Ain Shams Eng. J. 13, 1–23 (2022)
go back to reference Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using exp (-ϕ(ξ))-expansion method. Optik 170, 555–560 (2018)ADS Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using exp (-ϕ(ξ))-expansion method. Optik 170, 555–560 (2018)ADS
go back to reference Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016) Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
go back to reference Baskonus, H.M., Bulut, H., Sulaiman, T.S.: New complex hyperbolic structure to the Lonngren-wave equation by using sine-Gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 129–138 (2019)MathSciNet Baskonus, H.M., Bulut, H., Sulaiman, T.S.: New complex hyperbolic structure to the Lonngren-wave equation by using sine-Gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 129–138 (2019)MathSciNet
go back to reference Bekir, A., Zahran, E.H.M.: Bright and dark soliton solutions for the complex Kundu–Eckhaus equation. Optik 223, 1–18 (2020) Bekir, A., Zahran, E.H.M.: Bright and dark soliton solutions for the complex Kundu–Eckhaus equation. Optik 223, 1–18 (2020)
go back to reference Bian, C., Pang, J., Jin, L., Ying, X.: Solving two fifth order strong nonlinear evolution equations by using the (GG’)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2337–2343 (2010)ADSMathSciNetMATH Bian, C., Pang, J., Jin, L., Ying, X.: Solving two fifth order strong nonlinear evolution equations by using the (GG’)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2337–2343 (2010)ADSMathSciNetMATH
go back to reference Bilal, M., Ahmad, J.: A variety of exact optical soliton solutions to the generalized (2+1)-dimensional dynamical conformable fractional Schrödinger model. Results Phys. 33, 1–12 (2022) Bilal, M., Ahmad, J.: A variety of exact optical soliton solutions to the generalized (2+1)-dimensional dynamical conformable fractional Schrödinger model. Results Phys. 33, 1–12 (2022)
go back to reference Bilal, M., Rehaman, S.U., Ahmad, J.: Dispersive solitary wave solutions for the dynamical soliton model by three versatile analytical mathematical methods. Eur. Phys. J. plus 137, 674 (2022) Bilal, M., Rehaman, S.U., Ahmad, J.: Dispersive solitary wave solutions for the dynamical soliton model by three versatile analytical mathematical methods. Eur. Phys. J. plus 137, 674 (2022)
go back to reference Biswas, A., Yidirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 160, 24–32 (2018)ADS Biswas, A., Yidirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 160, 24–32 (2018)ADS
go back to reference Biswas, A., Ekici, M., Kara, A.S.A.H.: Optical solitons and conservation law in birefringent fibers with Kundu–Eckhaus equation by extended trial function method. Optik 179, 471–478 (2019)ADS Biswas, A., Ekici, M., Kara, A.S.A.H.: Optical solitons and conservation law in birefringent fibers with Kundu–Eckhaus equation by extended trial function method. Optik 179, 471–478 (2019)ADS
go back to reference Demiray, S.T., Bayrakci, U.: Soliton solutions for the space-time fractional Heisenberg ferromagnetic spin chain equation by generalized Kudryashov method and modified exp (-Ω(η))-expansion function method. Rev. Mex. Fis. 67(3), 393–402 (2020) Demiray, S.T., Bayrakci, U.: Soliton solutions for the space-time fractional Heisenberg ferromagnetic spin chain equation by generalized Kudryashov method and modified exp (-Ω(η))-expansion function method. Rev. Mex. Fis. 67(3), 393–402 (2020)
go back to reference Duran, S.: Extractions of travelling wave solutions of (2+1)-dimensional Boiti–Leon–Pempinelli system via (G’/G,1/G)-expansion method. Opt. Quant. Electron. 53(6), 1–12 (2021)ADS Duran, S.: Extractions of travelling wave solutions of (2+1)-dimensional Boiti–Leon–Pempinelli system via (G’/G,1/G)-expansion method. Opt. Quant. Electron. 53(6), 1–12 (2021)ADS
go back to reference Eckhaus, W.: The long-time behaviour for perturbed wave-equations and related problems. Trends Appl. Pure Math. Mech. 249, 168–194 (1986)ADSMathSciNetMATH Eckhaus, W.: The long-time behaviour for perturbed wave-equations and related problems. Trends Appl. Pure Math. Mech. 249, 168–194 (1986)ADSMathSciNetMATH
go back to reference Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dark and singular optical solitons with Kundu–Eckhaus equation by extended trial equation method and extended G’/G-expansion scheme. Optik 127(22), 10490–10497 (2016)ADS Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dark and singular optical solitons with Kundu–Eckhaus equation by extended trial equation method and extended G’/G-expansion scheme. Optik 127(22), 10490–10497 (2016)ADS
go back to reference Elboree, M.K.: Soliton molecules and exp (-ϕ(ζ))-expansion method for the new (3+1)-dimensional Kadomtsev–Petviashvii (KP) equation. Chin. J. Phys. 71, 623–633 (2021)MathSciNet Elboree, M.K.: Soliton molecules and exp (-ϕ(ζ))-expansion method for the new (3+1)-dimensional Kadomtsev–Petviashvii (KP) equation. Chin. J. Phys. 71, 623–633 (2021)MathSciNet
go back to reference Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299(2–3), 189–188 (2002)ADSMathSciNetMATH Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299(2–3), 189–188 (2002)ADSMathSciNetMATH
go back to reference Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)ADSMathSciNetMATH Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)ADSMathSciNetMATH
go back to reference Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 133(4), 1–18 (2018) Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 133(4), 1–18 (2018)
go back to reference Gou, S., Zhou, Y.: The extended (G’/G)-expansion method and its application to the Whitham–Broer–Kaup-like equation and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 215(9), 3214–3221 (2010)MathSciNetMATH Gou, S., Zhou, Y.: The extended (G’/G)-expansion method and its application to the Whitham–Broer–Kaup-like equation and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 215(9), 3214–3221 (2010)MathSciNetMATH
go back to reference Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)MathSciNetMATH Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)MathSciNetMATH
go back to reference Kadkhoda, N., Jafari, H.: An analytical approach to obtain exact solutions of some space–time conformable fractional differential equations. Adv. Differ. Equ. 428, 1–10 (2019)MathSciNetMATH Kadkhoda, N., Jafari, H.: An analytical approach to obtain exact solutions of some space–time conformable fractional differential equations. Adv. Differ. Equ. 428, 1–10 (2019)MathSciNetMATH
go back to reference Kaplan, M.: Optical solutions of the Kundu–Eckhaus equation via two different methods. Adlyaman Univ. J. Sci. 11(1), 126–135 (2021)MathSciNet Kaplan, M.: Optical solutions of the Kundu–Eckhaus equation via two different methods. Adlyaman Univ. J. Sci. 11(1), 126–135 (2021)MathSciNet
go back to reference Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetMATH Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetMATH
go back to reference Khater, M., Akbar, M.A., Akinyemi, L., Jhangeer, A., Rezazadeh, H.: Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of (G’/G)-expansion method. Opt. Quant. Electron. 53(9), 1–16 (2021) Khater, M., Akbar, M.A., Akinyemi, L., Jhangeer, A., Rezazadeh, H.: Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of (G’/G)-expansion method. Opt. Quant. Electron. 53(9), 1–16 (2021)
go back to reference Kumar, V.S., Razazadeh, H., Eslami, M., Izadi, F.: Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. Int. J. Appl. Comput. Math. 5(5), 1–10 (2019)MathSciNet Kumar, V.S., Razazadeh, H., Eslami, M., Izadi, F.: Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. Int. J. Appl. Comput. Math. 5(5), 1–10 (2019)MathSciNet
go back to reference Kundu, A.: Landau–Lifshitz and higher order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25(12), 3433–3438 (1984)ADSMathSciNet Kundu, A.: Landau–Lifshitz and higher order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25(12), 3433–3438 (1984)ADSMathSciNet
go back to reference Kundu, P.R., Fahim, M.R.A., Islam, M.E., Akbar, M.A.: The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis. Heliyon 7(3), e06459 (2021) Kundu, P.R., Fahim, M.R.A., Islam, M.E., Akbar, M.A.: The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis. Heliyon 7(3), e06459 (2021)
go back to reference Li, L.X., Li, E.Q., Wang, M.L.: The (G’/G,1/G)-expansion method and its applications to travelling wave solutions of the Zakharov equations. Appl. Math. 25(4), 454–462 (2010)MathSciNetMATH Li, L.X., Li, E.Q., Wang, M.L.: The (G’/G,1/G)-expansion method and its applications to travelling wave solutions of the Zakharov equations. Appl. Math. 25(4), 454–462 (2010)MathSciNetMATH
go back to reference Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., Li, C.: Chaotic oppositional sine–cosine method for solving global optimization problems. Eng. Comput. 38, 1223–12139 (2022) Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., Li, C.: Chaotic oppositional sine–cosine method for solving global optimization problems. Eng. Comput. 38, 1223–12139 (2022)
go back to reference Liu, J.G., Zeng, Z.F.: Solving (3+1)-dimensional generalized BKP equations by the improved (G’/G)-expansion method. Indian J. Pure Appl. Phys. (IJPAP) 53(11), 713–717 (2015) Liu, J.G., Zeng, Z.F.: Solving (3+1)-dimensional generalized BKP equations by the improved (G’/G)-expansion method. Indian J. Pure Appl. Phys. (IJPAP) 53(11), 713–717 (2015)
go back to reference Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)ADSMathSciNetMATH Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)ADSMathSciNetMATH
go back to reference Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Optik 207, 1–17 (2020) Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Optik 207, 1–17 (2020)
go back to reference Mamun, A.A., Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S.: Sine-Gordon expansion method to construct the solitary wave solutions of a family of 3D fractional WBBM equations. Results Phys. 40, 1–9 (2022) Mamun, A.A., Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S.: Sine-Gordon expansion method to construct the solitary wave solutions of a family of 3D fractional WBBM equations. Results Phys. 40, 1–9 (2022)
go back to reference Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via tanϕξ-expansion method. Optik 127(14), 5543–5551 (2016)ADS Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via tanϕξ-expansion method. Optik 127(14), 5543–5551 (2016)ADS
go back to reference Miah, M.M., Ali, H.M.S., Akbar, M.A., Wazwaz, A.M.: Some applications of the (G’/G,1/G)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. plus 132(6), 1–15 (2017) Miah, M.M., Ali, H.M.S., Akbar, M.A., Wazwaz, A.M.: Some applications of the (G’/G,1/G)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. plus 132(6), 1–15 (2017)
go back to reference Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)MATH Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)MATH
go back to reference Ni, W.G., Dai, C.Q.: Note on some result of differential ansätz based on extended tanh-function method for nonlinear models. Appl. Math. Comput. 270, 434–440 (2015)MathSciNetMATH Ni, W.G., Dai, C.Q.: Note on some result of differential ansätz based on extended tanh-function method for nonlinear models. Appl. Math. Comput. 270, 434–440 (2015)MathSciNetMATH
go back to reference Nofal, T.A.: Simple equation method for nonlinear partial differential equations and its applications. J. Egypt. Math. Soc. 24(2), 204–209 (2016)MathSciNetMATH Nofal, T.A.: Simple equation method for nonlinear partial differential equations and its applications. J. Egypt. Math. Soc. 24(2), 204–209 (2016)MathSciNetMATH
go back to reference Radhakrishnan, R., Kundu, A., Lakshmana, M.: Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-kerr media. Phys. Rev. E 60(3), 3314–3323 (1999)ADS Radhakrishnan, R., Kundu, A., Lakshmana, M.: Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-kerr media. Phys. Rev. E 60(3), 3314–3323 (1999)ADS
go back to reference Rahman, M.A.: The exp (-ϕ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014) Rahman, M.A.: The exp (-ϕ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014)
go back to reference Rezazadeh, H., Korkmaz, A., Eslami, M., Alizamini, S.M.M.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51(3), 1–12 (2019) Rezazadeh, H., Korkmaz, A., Eslami, M., Alizamini, S.M.M.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51(3), 1–12 (2019)
go back to reference Smadi, M.A., Arqub, O.A., Hadid, S.: Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 95(10), 1–18 (2020) Smadi, M.A., Arqub, O.A., Hadid, S.: Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 95(10), 1–18 (2020)
go back to reference Unal, A.G.: Exact solutions of some complex partial differential equations of fractional order. J. Fract. Calc. Appl. 5, 209–214 (2014)MathSciNetMATH Unal, A.G.: Exact solutions of some complex partial differential equations of fractional order. J. Fract. Calc. Appl. 5, 209–214 (2014)MathSciNetMATH
go back to reference Wang, M., Li, X., Zhang, J.: The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetMATH Wang, M., Li, X., Zhang, J.: The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)ADSMathSciNetMATH
go back to reference Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)MathSciNetMATH Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)MathSciNetMATH
go back to reference Yang, Z., Hon, B.Y.C.: An improved modified tanh-function method. Zeitschrift Für Naturforschung A 61(3–4), 103–115 (2006)ADSMATH Yang, Z., Hon, B.Y.C.: An improved modified tanh-function method. Zeitschrift Für Naturforschung A 61(3–4), 103–115 (2006)ADSMATH
go back to reference Zahran, E.H.M., Khater, M.M.A.: Modified tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)MathSciNetMATH Zahran, E.H.M., Khater, M.M.A.: Modified tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)MathSciNetMATH
go back to reference Zhang, J., Wei, X., Lu, Y.: A generalized (G’/G)-expansion method and its applications. Phys. Lett. A 372(20), 3653–3658 (2008)ADSMathSciNetMATH Zhang, J., Wei, X., Lu, Y.: A generalized (G’/G)-expansion method and its applications. Phys. Lett. A 372(20), 3653–3658 (2008)ADSMathSciNetMATH
go back to reference Zhang, J., Jiang, F., Zhao, X.: An improved (G’/G)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)MathSciNetMATH Zhang, J., Jiang, F., Zhao, X.: An improved (G’/G)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)MathSciNetMATH
Metadata
Title
Optical soliton solutions to the time-fractional Kundu–Eckhaus equation through the -expansion technique
Authors
M. Ali Akbar
Farah Aini Abdullah
Mst. Munny Khatun
Publication date
01-04-2023
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 4/2023
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-022-04530-w

Other articles of this Issue 4/2023

Optical and Quantum Electronics 4/2023 Go to the issue