Skip to main content
Top
Published in: Optical and Quantum Electronics 8/2016

01-08-2016

Optical soliton wave solutions to the resonant Davey–Stewartson system

Authors: Mehdi Fazli Aghdaei, Jalil Manafian

Published in: Optical and Quantum Electronics | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the resonant Davey–Stewartson (DS) system. The resonant DS system is a natural \((2+1)\)-dimensional version of the resonant nonlinear Schrödinger equation. Traveling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, improved \(\tan (\phi /2)\)-expansion method (ITEM) and generalized (G′/G)-expansion method for seeking more exact solutions via the resonant Davey–Stewartson system. These methods are direct, concise and simple to implement compared to other existing methods. The exact particular solutions containing four types of solutions, i.e., hyperbolic function, trigonometric function, exponential and solutions. We obtained further solutions comparing these methods with other methods. The results demonstrate that the aforementioned methods are more efficient than the multi-linear variable separation method applied by Tang et al. (Chaos Solitons Fractals 42:2707–2712, 2009). Recently the ITEM was developed for searching exact traveling wave solutions of nonlinear partial differential equations. Abundant exact traveling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering and physics fields. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving the nonlinear problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alam, M.N., Akbar, M.A., Hoque, M.F.: Exact traveling wave solutions of the (3 + 1)-dimensional mKdV-ZK equation and the (1 + 1)-dimensional compound KdVB equation using new approach of the generalized (G′/G)-expansion method. Pramana J. Phys. 83, 317–329 (2014)ADSCrossRef Alam, M.N., Akbar, M.A., Hoque, M.F.: Exact traveling wave solutions of the (3 + 1)-dimensional mKdV-ZK equation and the (1 + 1)-dimensional compound KdVB equation using new approach of the generalized (G′/G)-expansion method. Pramana J. Phys. 83, 317–329 (2014)ADSCrossRef
go back to reference Alam, Md.N: Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method. Results Phys. 5, 168–177 (2015)ADSCrossRef Alam, Md.N: Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method. Results Phys. 5, 168–177 (2015)ADSCrossRef
go back to reference Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2 + 1)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26, 201–208 (2016a)MathSciNet Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2 + 1)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26, 201–208 (2016a)MathSciNet
go back to reference Baskonus, H.M., Koç, D.A., Bulut, H.: New travelling wave prototypes to the nonlinear Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Sci. Lett. A 7, 67–76 (2016a) Baskonus, H.M., Koç, D.A., Bulut, H.: New travelling wave prototypes to the nonlinear Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Sci. Lett. A 7, 67–76 (2016a)
go back to reference Bekir, A., Güner, Ö.: Topological (dark) soliton solutions for the Camassa–Holm type equations. Ocean Eng. 74, 276–279 (2013)CrossRef Bekir, A., Güner, Ö.: Topological (dark) soliton solutions for the Camassa–Holm type equations. Ocean Eng. 74, 276–279 (2013)CrossRef
go back to reference Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Lett. 22, 1775–1777 (2009)MathSciNetCrossRefMATH Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Lett. 22, 1775–1777 (2009)MathSciNetCrossRefMATH
go back to reference Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2 + 1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21, 6 (2016). doi:10.3390/mca21020006 Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2 + 1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21, 6 (2016). doi:10.​3390/​mca21020006
go back to reference Chan, W.L., Zixiang, Z.: Line soliton solutions for a generalized Davey–Stewartson equation with variable coefficients. Lett. Math. Phys. 25, 327–334 (1992)ADSMathSciNetCrossRefMATH Chan, W.L., Zixiang, Z.: Line soliton solutions for a generalized Davey–Stewartson equation with variable coefficients. Lett. Math. Phys. 25, 327–334 (1992)ADSMathSciNetCrossRefMATH
go back to reference Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method. Zeitschrift für Naturforschung A 64a, 420–430 (2009)ADS Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method. Zeitschrift für Naturforschung A 64a, 420–430 (2009)ADS
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. J. 26, 448–479 (2010a)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. J. 26, 448–479 (2010a)MathSciNetMATH
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–1398 (2010b)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33, 1384–1398 (2010b)MathSciNetMATH
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011a)MathSciNetCrossRef Dehghan, M., Manafian, J., Saadatmandi, A.: Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011a)MathSciNetCrossRef
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Mod. Phys. B 25, 2965–2981 (2011b)ADSMathSciNetCrossRefMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Mod. Phys. B 25, 2965–2981 (2011b)ADSMathSciNetCrossRefMATH
go back to reference Ebadi, G., Biswas, A.: The (G′/G) method and 1-soliton solution of the Davey–Stewartson equation. Math. Comput. Model. 53, 694–698 (2011)MathSciNetCrossRefMATH Ebadi, G., Biswas, A.: The (G′/G) method and 1-soliton solution of the Davey–Stewartson equation. Math. Comput. Model. 53, 694–698 (2011)MathSciNetCrossRefMATH
go back to reference Eden, A., Erbay, S., Hacinliyan, I.: Reducing a generalized Davey–Stewartson system to a non-local nonlinear Schrödinger equation. Chaos Solitons Fractals 41, 688–697 (2009)ADSMathSciNetCrossRefMATH Eden, A., Erbay, S., Hacinliyan, I.: Reducing a generalized Davey–Stewartson system to a non-local nonlinear Schrödinger equation. Chaos Solitons Fractals 41, 688–697 (2009)ADSMathSciNetCrossRefMATH
go back to reference Fan, E.: Travelling wave solutions for two generalized Hirota–Satsuma KdV systems. Z. Naturforsch. 56A, 312–319 (2001)ADS Fan, E.: Travelling wave solutions for two generalized Hirota–Satsuma KdV systems. Z. Naturforsch. 56A, 312–319 (2001)ADS
go back to reference Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)ADSMathSciNetCrossRefMATH Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)ADSMathSciNetCrossRefMATH
go back to reference Feng, B., Cai, Y.: Concentration for blow-up solutions of the Davey–Stewartson system in \(\mathbb{R}^3\). Nonlinear Anal. Real World Appl. 26, 330–342 (2015)MathSciNetCrossRefMATH Feng, B., Cai, Y.: Concentration for blow-up solutions of the Davey–Stewartson system in \(\mathbb{R}^3\). Nonlinear Anal. Real World Appl. 26, 330–342 (2015)MathSciNetCrossRefMATH
go back to reference Ganji, Z.Z., Ganji, D.D., Asgari, A.: Finding general and explicit solutions of high nonlinear equations by the Exp-function method. Comput. Math. Appl. 58, 2124–2130 (2009)MathSciNetCrossRefMATH Ganji, Z.Z., Ganji, D.D., Asgari, A.: Finding general and explicit solutions of high nonlinear equations by the Exp-function method. Comput. Math. Appl. 58, 2124–2130 (2009)MathSciNetCrossRefMATH
go back to reference Garagash, T.I., Pogrebkov, A.K.: Inverse scattering transform for the Hamiltonian version of the Davey–Stewartson I equation. Theor. Math. Phys. 99, 583–587 (1994)MathSciNetCrossRefMATH Garagash, T.I., Pogrebkov, A.K.: Inverse scattering transform for the Hamiltonian version of the Davey–Stewartson I equation. Theor. Math. Phys. 99, 583–587 (1994)MathSciNetCrossRefMATH
go back to reference Hasseine, A., Barhoum, Z., Attarakih, M., Bart, H.J.: Analytical solutions of the particle breakage equation by the Adomian decomposition and the variational iteration methods. Adv. Powder Technol. 24, 252–256 (2013)CrossRef Hasseine, A., Barhoum, Z., Attarakih, M., Bart, H.J.: Analytical solutions of the particle breakage equation by the Adomian decomposition and the variational iteration methods. Adv. Powder Technol. 24, 252–256 (2013)CrossRef
go back to reference Islam, Md.S, Khan, K., Akbar, M.A.: Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 21, 1–6 (2016) Islam, Md.S, Khan, K., Akbar, M.A.: Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 21, 1–6 (2016)
go back to reference Jahani, M., Manafian, J.: Improvement of the Exp-function method for solving the BBM equation with time-dependent coefficients. Eur. Phys. J. Plus 131, 1–11 (2016)CrossRef Jahani, M., Manafian, J.: Improvement of the Exp-function method for solving the BBM equation with time-dependent coefficients. Eur. Phys. J. Plus 131, 1–11 (2016)CrossRef
go back to reference Khan, K., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G)-expansion method. J. Egypt. Math. Soc. 22, 220–226 (2013a)MathSciNetCrossRefMATH Khan, K., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G)-expansion method. J. Egypt. Math. Soc. 22, 220–226 (2013a)MathSciNetCrossRefMATH
go back to reference Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4, 903–909 (2013b)CrossRef Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4, 903–909 (2013b)CrossRef
go back to reference Li, J.H., Lou, S.Y., Chow, K.W.: Doubly periodic patterns of modulated hydrodynamic waves: exact solutions of the Davey–Stewartson system. Acta. Mech. Sin. 27, 620–626 (2011)ADSMathSciNetCrossRefMATH Li, J.H., Lou, S.Y., Chow, K.W.: Doubly periodic patterns of modulated hydrodynamic waves: exact solutions of the Davey–Stewartson system. Acta. Mech. Sin. 27, 620–626 (2011)ADSMathSciNetCrossRefMATH
go back to reference Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)CrossRef Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)CrossRef
go back to reference Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(-\tan(\phi /2)\)-expansion method. Optik 127, 4222–4245 (2016)ADSCrossRef Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(-\tan(\phi /2)\)-expansion method. Optik 127, 4222–4245 (2016)ADSCrossRef
go back to reference Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015a)CrossRef Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015a)CrossRef
go back to reference Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana 130, 31–52 (2015b)ADSCrossRef Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G′/G)-expansion method. Pramana 130, 31–52 (2015b)ADSCrossRef
go back to reference Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 1079 (2015c). doi:10.1155/2015/107978 CrossRefMATH Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 1079 (2015c). doi:10.​1155/​2015/​107978 CrossRefMATH
go back to reference Manafian, J., Lakestani, M.: Application of \(\tan (\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016a)ADSCrossRef Manafian, J., Lakestani, M.: Application of \(\tan (\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016a)ADSCrossRef
go back to reference Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quantum Electron. 48, 1–32 (2016b)CrossRef Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quantum Electron. 48, 1–32 (2016b)CrossRef
go back to reference Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via \(\tan (\phi /2)\)-expansion method. Optik 127, 5543–5551 (2016c)ADSCrossRef Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via \(\tan (\phi /2)\)-expansion method. Optik 127, 5543–5551 (2016c)ADSCrossRef
go back to reference Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2 + 1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 130, 1–12 (2015)MathSciNet Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2 + 1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 130, 1–12 (2015)MathSciNet
go back to reference Nawaz, T., Yildirim, A., Mohyud-Din, S.T.: Analytical solutions Zakharov–Kuznetsov equations. Adv. Powder Technol. 24, 252–256 (2013)CrossRef Nawaz, T., Yildirim, A., Mohyud-Din, S.T.: Analytical solutions Zakharov–Kuznetsov equations. Adv. Powder Technol. 24, 252–256 (2013)CrossRef
go back to reference Paul, S.K., Chowdhury, A.R.: On the n-fold backlund transformation for the Davey–Stewartson equation. Chaos Solitons Fractals 9, 1913–1920 (1998)ADSMathSciNetCrossRefMATH Paul, S.K., Chowdhury, A.R.: On the n-fold backlund transformation for the Davey–Stewartson equation. Chaos Solitons Fractals 9, 1913–1920 (1998)ADSMathSciNetCrossRefMATH
go back to reference Rashidi, M.M., Hayat, T., Keimanesh, T., Yousefian, H.: A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method. Heat Transf. Asian Res. 42, 31–45 (2013)CrossRef Rashidi, M.M., Hayat, T., Keimanesh, T., Yousefian, H.: A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method. Heat Transf. Asian Res. 42, 31–45 (2013)CrossRef
go back to reference Sung, L.Y.: An inverse scattering transform for the Davey–Stewartson equation II equations. J. Math. Anal. Appl. 183, 121–154 (1994)MathSciNetCrossRefMATH Sung, L.Y.: An inverse scattering transform for the Davey–Stewartson equation II equations. J. Math. Anal. Appl. 183, 121–154 (1994)MathSciNetCrossRefMATH
go back to reference Taghizadeh, N., Neirameh, A.: New complex solutions for some special nonlinear partial differential systems. Comput. Math. Appl. 62, 2037–2044 (2011)MathSciNetCrossRefMATH Taghizadeh, N., Neirameh, A.: New complex solutions for some special nonlinear partial differential systems. Comput. Math. Appl. 62, 2037–2044 (2011)MathSciNetCrossRefMATH
go back to reference Tang, X.Y., Chow, K.W., Rogers, C.: Propagating wave patterns for the ’resonant’ Davey–Stewartson. Chaos Solitons Fractals 42, 2707–2712 (2009)ADSCrossRefMATH Tang, X.Y., Chow, K.W., Rogers, C.: Propagating wave patterns for the ’resonant’ Davey–Stewartson. Chaos Solitons Fractals 42, 2707–2712 (2009)ADSCrossRefMATH
go back to reference Tascan, F., Bekir, A., Koparan, M.: Travelling wave solutions of nonlinear evolution equations by using the first integral method. Commun. Nonlinear Sci. Num. Simul. 14, 1810–1815 (2009)CrossRef Tascan, F., Bekir, A., Koparan, M.: Travelling wave solutions of nonlinear evolution equations by using the first integral method. Commun. Nonlinear Sci. Num. Simul. 14, 1810–1815 (2009)CrossRef
go back to reference Yusufoglu, E., Bekir, A.: Application of the variational iteration method to the regularized long wave equation. Comput. Math. Appl. 54, 1154–1161 (2007)MathSciNetCrossRefMATH Yusufoglu, E., Bekir, A.: Application of the variational iteration method to the regularized long wave equation. Comput. Math. Appl. 54, 1154–1161 (2007)MathSciNetCrossRefMATH
go back to reference Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota–Sasuma coupled KDV equations. Chaos Solitons Fractals 22, 285–303 (2004)ADSMathSciNetCrossRefMATH Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota–Sasuma coupled KDV equations. Chaos Solitons Fractals 22, 285–303 (2004)ADSMathSciNetCrossRefMATH
go back to reference Zedana, H.A., Tantawy, S.S.: Solution of Davey–Stewartson equations by homotopy perturbation method. Comput. Math. Math. Phys. 49, 1382–1388 (2009)MathSciNetCrossRef Zedana, H.A., Tantawy, S.S.: Solution of Davey–Stewartson equations by homotopy perturbation method. Comput. Math. Math. Phys. 49, 1382–1388 (2009)MathSciNetCrossRef
go back to reference Zhou, Z.X., Ma, W.X., Zhou, R.G.: Finite-dimensional integrable systems associated with the Davey–Stewartson I equation. Nonlinearity 14, 701–717 (2001)ADSMathSciNetCrossRefMATH Zhou, Z.X., Ma, W.X., Zhou, R.G.: Finite-dimensional integrable systems associated with the Davey–Stewartson I equation. Nonlinearity 14, 701–717 (2001)ADSMathSciNetCrossRefMATH
Metadata
Title
Optical soliton wave solutions to the resonant Davey–Stewartson system
Authors
Mehdi Fazli Aghdaei
Jalil Manafian
Publication date
01-08-2016
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 8/2016
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0681-0

Other articles of this Issue 8/2016

Optical and Quantum Electronics 8/2016 Go to the issue