Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Optimal bounds for the generalized Euler–Mascheroni constant

Authors: Ti-Ren Huang, Bo-Wen Han, Xiao-Yan Ma, Yu-Ming Chu

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

We provide several sharp upper and lower bounds for the generalized Euler–Mascheroni constant. As consequences, some previous bounds for the Euler–Mascheroni constant are improved.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(a>0\). Then the generalized Euler–Mascheroni constant \(\gamma (a)\) [1] is given by
$$ \gamma (a)=\lim_{n\rightarrow \infty } \biggl[ \frac{1}{a}+ \frac{1}{a+1}+ \cdots +\frac{1}{a+n-1}-\log \biggl( \frac{a+n-1}{a} \biggr) \biggr] . $$
We clearly see that the generalized Euler–Mascheroni constant \(\gamma (a)\) is the natural generalization of the classical Euler–Mascheroni constant [25]
$$ \gamma =\gamma (1)=\lim_{n\rightarrow \infty } \biggl( 1+\frac{1}{2}+ \frac{1}{3}+\cdots +\frac{1}{n}-\log n \biggr) =0.577215664901\ldots \,. $$
Recently, the two bounds for γ and \(\gamma (a)\) have attracted the attention of many mathematicians. In particular, many remarkable inequalities and asymptotic formulas for γ and \(\gamma (a)\) can be found in the literature [610].
Let
$$\begin{aligned}& \gamma_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n}-\log n, \\& R_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n}-\log \biggl( n+ \frac{1}{2} \biggr) , \\& S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n-1}+\frac{1}{2n}- \log n, \\& T_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n}-\log \biggl( n+ \frac{1}{2}+\frac{1}{24n} \biggr) , \\& y_{n}(a)=\frac{1}{a}+\frac{1}{a+1}+\cdots + \frac{1}{a+n-1}-\log \biggl( \frac{a+n-1}{a} \biggr) , \\& \alpha_{n}(a)=\frac{1}{a}+\frac{1}{a+1}+\cdots + \frac{1}{a+n-2}+ \frac{1}{2(a+n-1)}-\log \biggl( \frac{a+n-1}{a} \biggr) , \end{aligned}$$
(1.1)
$$\begin{aligned}& \beta_{n}(a)=\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a+n-1}- \log \biggl( \frac{a+n-1/2}{a} \biggr) , \end{aligned}$$
(1.2)
$$\begin{aligned}& \lambda_{n}(a)=\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a+n-1}- \log \biggl( \frac{a+n-1/2}{a}+ \frac{1}{24a(a+n-1)} \biggr) , \end{aligned}$$
(1.3)
$$\begin{aligned}& \mu_{n}(a)=y_{n}(a)-\frac{1}{2(a+n-1)}+\frac{1}{12(a+n-1)^{2}}- \frac{1}{120(a+n-1)^{4}}. \end{aligned}$$
(1.4)
Negoi [11] proved that the two-sided inequality
$$ \frac{1}{48(n+1)^{3}}\leq \gamma -T_{n}\leq \frac{1}{48n^{3}} $$
(1.5)
is valid for \(n\geq 1\).
Qiu and Vuorinen [12] proved that the two-sided inequality
$$ \frac{1}{2n}-\frac{\lambda }{n^{2}}< \gamma_{n}-\gamma \leq \frac{1}{2n}-\frac{\mu }{n^{2}} $$
(1.6)
is valid for \(n\geq 1\) if and only if \(\lambda \geq 1/12\) and \(\mu \leq \gamma -1/2\).
In [13], DeTemple proved that the double inequality
$$ \frac{1}{24(n+1)^{2}}\leq R_{n}-\gamma \leq \frac{1}{24n^{2}} $$
(1.7)
holds for all \(n\geq 1\).
Chen [14] proved that \(\alpha =1/\sqrt{12\gamma -6}-1\) and \(\beta =0\) are the best possible constants such that the double inequality
$$ \frac{1}{12(n+\alpha )^{2}}\leq \gamma -S_{n}\leq \frac{1}{12(n+ \beta )^{2}} $$
(1.8)
holds for \(n\geq 1\).
Sîntămărian [15], and Berinde and Mortici [16] proved that the double inequalities
$$\begin{aligned}& \frac{1}{2(n+a)}\leq y_{n}(a)-\gamma (a)\leq \frac{1}{2(n+a-1)}, \end{aligned}$$
(1.9)
$$\begin{aligned}& \frac{1}{24(n+a)^{2}}\leq \beta_{n}(a)-\gamma (a)\leq \frac{1}{24(n+a-1)^{2}} \end{aligned}$$
(1.10)
are valid for all \(a>0\) and \(n\geq 1\).
The main purpose of this article is to find the best possible constants \(\alpha_{1}\), \(\alpha_{2}\), \(\alpha_{3}\), \(\alpha_{4}\), \(\beta_{1}\), \(\beta_{2}\), \(\beta_{3}\) and \(\beta_{4}\) such that the double inequalities
$$\begin{aligned}& \frac{1}{12(a+n-\alpha_{1})^{2}}\leq \gamma (a)-\alpha_{n}(a)< \frac{1}{12(a+n- \beta_{1})^{2}}, \\& \frac{1}{24(a+n-\alpha_{2})^{2}}\leq \beta_{n}(a)-\gamma (a)< \frac{1}{24(a+n- \beta_{2})^{2}}, \\& \frac{1}{48(a+n-\alpha_{3})^{3}}\leq \gamma (a)-\lambda_{n}(a)< \frac{1}{48(a+n- \beta_{3})^{3}}, \\& \frac{\alpha_{4}}{(a+n-1)^{6}}\leq \gamma (a)-\mu_{n}(a)< \frac{\beta _{4}}{(a+n-1)^{6}} \end{aligned}$$
hold for all \(a>0\) and \(n\geq n_{0}\) and improve the bounds for the Euler–Mascheroni constant.

2 Main results

In order to prove our main results, we need several formulas and lemmas which we present in this section.
For \(x>0\), the classical gamma function Γ and its logarithmic derivative, the so-called psi function ψ are defined [1724] as
$$ \Gamma (x)= \int_{0}^{\infty }t^{x-1}e^{-t}dt, \qquad \psi (x)=\frac{ \Gamma^{\prime }(x)}{\Gamma (x)}, $$
respectively.
The psi function ψ has the recurrence and asymptotic formulas [25] as follows:
$$\begin{aligned}& \psi (x+1)=\psi (x)+\frac{1}{x}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \psi (x)\sim \log x-\frac{1}{2x}-\frac{1}{12x^{2}}+\frac{1}{120x^{4}}- \frac{1}{252x ^{6}}+\cdots \quad (x\rightarrow \infty ). \end{aligned}$$
(2.2)
Lemma 2.1
(See [14, Proof of Theorem 1])
The function
$$ f_{1}(x)=\frac{1}{ \sqrt{12 ( \log x-\psi (x+1)+\frac{1}{2x} ) }}-x $$
(2.3)
is strictly decreasing on \([2, \infty )\) with \(f_{1}(\infty )=0\).
Lemma 2.2
(See [26, Proof of Theorem 1], [27, Remark 4])
The function
$$ f_{2}(x)=\frac{1}{\sqrt{24 ( \psi (x+1)-\log (x+1/2) ) }}-x $$
(2.4)
is strictly decreasing on \([2, \infty )\) with \(f_{2}(\infty )=1/2\).
Lemma 2.3
(See [28, Proof of Theorem 2])
The function
$$ f_{3}(x)=\frac{1}{\sqrt[3]{48 [ \log ( x+\frac{1}{2}+ \frac{1}{24x} ) -\psi (x+1) ] }}-x $$
(2.5)
is strictly decreasing on \([5, \infty )\) with \(f_{3}(\infty )=83/360\).
Lemma 2.4
(See [29, Theorem 1.2(2)])
The function
$$ f_{4}(x)=\frac{x^{2}}{120}- \biggl( \psi (x)-\log x+ \frac{1}{2x}+\frac{1}{12x ^{2}} \biggr) x^{6} $$
(2.6)
is strictly increasing from \((0, \infty )\) onto \((0, 1/252)\).
Theorem 2.5
Let \(\alpha_{n}(a)\) and \(f_{1}(x)\) be, respectively, defined by (1.1) and (2.3). Then \(\alpha_{1}=1-f_{1}(a+2)\) and \(\beta_{1}=1\) are the best possible constants such that the double inequality
$$ \frac{1}{12(a+n-\alpha_{1})^{2}}\leq \gamma (a)-\alpha_{n}(a)< \frac{1}{12(a+n- \beta_{1})^{2}} $$
(2.7)
holds for all \(a>0\) and \(n\geq 3\).
Proof
It follows from (1.1), (2.1) and (2.2) that
$$\begin{aligned} \gamma (a)-\alpha_{n}(a)&=\lim_{n\rightarrow \infty } \biggl[ \psi (n+a)- \psi (a)-\log \biggl( \frac{a+n-1}{a} \biggr) \biggr] \\ &\quad {}- \biggl[ \psi (n+a)-\psi (a)-\frac{1}{2(a+n-1)}-\log \biggl( \frac{a+n-1}{a} \biggr) \biggr] \\ &=\lim_{n\rightarrow \infty }\bigl[\psi (n+a)-\log (a+n-1)\bigr] \\ &\quad {}-\psi (n+a)+\frac{1}{2(a+n-1)}+\log (a+n-1) \\ &=\log (a+n-1)-\psi (n+a)+\frac{1}{2(a+n-1)}. \end{aligned}$$
(2.8)
From (2.3) and (2.8) we clearly see that inequality (2.7) is equivalent to
$$ \alpha_{1}\leq 1-f_{1}(n+a-1)< \beta_{1}. $$
(2.9)
Therefore, Theorem 2.5 follows easily from Lemma 2.1 and (2.19). □
Theorem 2.6
Let \(\beta_{n}(a)\) and \(f_{2}(x)\) be, respectively, defined by (1.2) and (2.4). Then \(\alpha_{2}=1-f_{2}(a+2)\) and \(\beta_{2}=1/2\) are the best possible constants such that the double inequality
$$ \frac{1}{24(a+n-\alpha_{2})^{2}}\leq \beta_{n}(a)-\gamma (a)< \frac{1}{24(a+n- \beta_{2})^{2}} $$
(2.10)
holds for all \(a>0\) and \(n\geq 3\).
Proof
It follows from (1.2), (2.1) and (2.2) that
$$ \beta_{n}(a)-\gamma (a)=\psi (n+a)-\log \biggl( a+n-\frac{1}{2} \biggr) . $$
(2.11)
From (2.4) and (2.11) we clearly see that inequality (2.10) can be rewritten as
$$ \alpha_{2}\leq 1-f_{2}(n+a-1)< \beta_{2}. $$
(2.12)
Therefore, Theorem 2.6 follows easily from Lemma 2.2 and (2.12). □
Remark 2.1
We clearly see that both the upper and the lower bounds given in (2.10) for \(\beta_{n}(a)-\gamma (a)\) are better than that given in (1.10) for \(n\geq 3\) due to \(1-f_{2}(2)=3-1/\sqrt{36-24( \gamma +\log 5-\log 2)}=0.466904841516\ldots \) .
Theorem 2.7
Let \(\lambda_{n}(a)\) and \(f_{3}(x)\) be, respectively, defined by (1.3) and (2.5). Then \(\alpha_{3}=1-f_{3}(a+5)\) and \(\beta_{3}=277/360\) are the best possible constants such that the double inequality
$$ \frac{1}{48(a+n-\alpha_{3})^{3}}\leq \gamma (a)-\lambda_{n}(a)< \frac{1}{48(a+n- \beta_{3})^{3}} $$
(2.13)
holds for all \(a>0\) and \(n\geq 6\).
Proof
From (1.3), (2.1) and (2.2) we have
$$ \gamma (a)-\lambda_{n}(a)=\log \biggl( a+n- \frac{1}{2}+ \frac{1}{24(a+n-1)} \biggr) -\psi (a+n). $$
(2.14)
It follows from (2.5) and (2.14) that inequality (2.13) can be rewritten as
$$ \alpha_{3}\leq 1-f_{3}(a+n-1)< \beta_{3}. $$
(2.15)
Therefore, Theorem 2.7 follows easily from Lemma 2.3 and (2.15). □
Theorem 2.8
Let \(\mu_{n}(a)\) and \(f_{4}(x)\) be, respectively, defined by (1.4) and (2.6). Then \(\alpha_{4}=f_{4}(a)\) and \(\beta_{4}=1/252\) are the best possible constants such that the double inequality
$$ \frac{\alpha_{4}}{(a+n-1)^{6}}\leq \gamma (a)-\mu_{n}(a)< \frac{\beta _{4}}{(a+n-1)^{6}} $$
(2.16)
holds for all \(a>0\) and \(n\geq 1\).
Proof
It follows from (1.4), (2.1) and (2.2) that
$$\begin{aligned} &\gamma (a)-\mu_{n}(a) \\ &\quad =\frac{1}{120(n+a-1)^{4}} \\ &\quad \quad {}- \biggl[ \psi (n+a-1)-\log (n+a-1)+ \frac{1}{2(n+a-1)}+ \frac{1}{12(n+a-1)^{2}} \biggr] . \end{aligned}$$
(2.17)
From (2.6) and (2.17) we clearly see that inequality (2.16) is equivalent to
$$ \alpha_{4}\leq f_{4}(n+a-1)< \beta_{4}. $$
(2.18)
Therefore, Theorem 2.8 follows easily from Lemma 2.4 and (2.18). □
Remark 2.2
Note that
$$ \alpha_{n}(a)=y_{n}(a)-\frac{1}{2(a+n-1)}. $$
(2.19)
It follows from (1.4), Theorem 2.5, Theorem 2.8 and (2.19) that \(\alpha_{1}=1-f_{1}(a+2)\), \(\beta_{1}=1\), \(\alpha_{4}=f_{4}(a)\) and \(\beta_{4}=1/252\) are the best possible constants such that the double inequalities
$$\begin{aligned}& \frac{1}{2(a+n-1)}-\frac{1}{12(a+n-\beta_{1})^{2}}< y_{n}(a)-\gamma (a) \\& \hphantom{\frac{1}{2(a+n-1)}-\frac{1}{12(a+n-\beta_{1})^{2}}}\leq \frac{1}{2(a+n-1)}-\frac{1}{12(a+n-\alpha_{1})^{2}}, \end{aligned}$$
(2.20)
$$\begin{aligned}& \frac{1}{2(a+n-1)}-\frac{1}{12(a+n-1)^{2}}+\frac{1}{120(a+n-1)^{4}}-\frac{ \beta_{4}}{(a+n-1)^{6}} \\& \quad < y_{n}(a)-\gamma (a) \\& \quad \leq \frac{1}{2(a+n-1)}-\frac{1}{12(a+n-1)^{2}}+ \frac{1}{120(a+n-1)^{4}}-\frac{\alpha_{4}}{(a+n-1)^{6}}, \end{aligned}$$
(2.21)
hold for all \(a>0\) and \(n\geq 3\).
We clearly see that the two inequalities (2.20) and (2.21) are the improvements of the inequality (1.9) for \(n\geq 3\).
Let \(a=1\) and
$$\begin{aligned}& c_{1}=f_{1}(3)=1/\sqrt{12(\gamma +\log 3)-20}-3=0.015998 \ldots \,, \\& c_{2}=f_{2}(3)=1/ \sqrt{44-24(\gamma +\log 7-\log 2)}-3=0.5242567\ldots \,, \\& c_{3}=f_{3}(6)=-6+1/\sqrt[3]{48(\gamma -49/20+\log 937-\log 144)}=0.242347\ldots \end{aligned}$$
and
$$\begin{aligned}& c_{4}=f_{4}(1)=\gamma -23/40=0.00221566\ldots \,. \end{aligned}$$
Then
$$\begin{aligned}& \gamma (1)=\gamma , \qquad \alpha_{n}(1)=\gamma_{n}- \frac{1}{2n}=S_{n}, \qquad \beta_{n}(1)=R_{n}, \\& \lambda_{n}(1)=T_{n}, \qquad \mu_{n}(1)= \gamma_{n}-\frac{1}{2n}+\frac{1}{12n ^{2}}-\frac{1}{120n^{4}}. \end{aligned}$$
Therefore, Theorems 2.52.8 lead to Corollaries 2.12.5 immediately.
Corollary 2.1
The double inequality
$$ \frac{1}{2n}-\frac{1}{12n^{2}}< \gamma_{n}-\gamma \leq \frac{1}{2n}-\frac{1}{12(n+c _{1})^{2}} $$
(2.22)
holds for all \(n\geq 3\).
Corollary 2.2
The double inequality
$$ \frac{1}{12(n+c_{1})^{2}}\leq \gamma -S_{n}< \frac{1}{12n^{2}} $$
(2.23)
holds for all \(n\geq 3\).
Corollary 2.3
The double inequality
$$ \frac{1}{24(n+c_{2})^{2}}\leq R_{n}-\gamma < \frac{1}{24(n+1/2)^{2}} $$
(2.24)
holds for all \(n\geq 3\).
Corollary 2.4
The double inequality
$$ \frac{1}{48(n+c_{3})^{2}}\leq \gamma -T_{n}< \frac{1}{48(n+83/360)^{2}} $$
(2.25)
holds for all \(n\geq 6\).
Corollary 2.5
The double inequality
$$ \frac{1}{2n}-\frac{1}{12n^{2}}+\frac{1}{120n^{4}}-\frac{1}{252n^{6}} < \gamma_{n}-\gamma \leq \frac{1}{2n}-\frac{1}{12n^{2}}+ \frac{1}{120n ^{4}}-\frac{c_{4}}{n^{6}} $$
(2.26)
holds for all \(n\geq 1\).
Remark 2.3
We clearly see that the upper bound given in (2.22) is better than that given in (1.6) for \(n\geq 3\) due to \(n>\sqrt{12(\gamma -1/2)}c_{1}/(1-\sqrt{12(\gamma -1/2)})=0.4117\ldots \) is the solution of the inequality \(1/[12(n+c_{1})^{2}]>( \gamma -1/2)/n^{2}\), the lower bound given in (2.23) is better than that given in (1.8) for \(n\geq 3\) due to \(c_{1}<1\sqrt{12\gamma -6}-1=0.03885914\ldots\) , both the upper and the lower bounds given in (2.24) are improvements of that given in (1.7) for \(n\geq 3\), inequality (2.25) is stronger than inequality (1.5) for \(n\geq 6\), the lower bound given in (2.26) is better than that given in (1.6) for \(n\geq 1\), and the upper bound given in (2.26) is stronger than that given in (1.6) for \(n\geq 2\) due to
$$ n> \biggl( \frac{1+\sqrt{1-4800[1-12(\gamma -1/2)]c_{4}}}{20[1-12( \gamma -1/2)]} \biggr) ^{1/2}=1.00000000006823\ldots $$
being the solution of the inequality
$$ \frac{1}{2n}-\frac{1}{12n^{2}}+\frac{1}{120n^{4}}-\frac{c_{4}}{n^{6}}< \frac{1}{2n}-\frac{\gamma -1/2}{n^{2}}. $$

3 Results and discussion

As the natural generalization of the Euler–Mascheroni constant
$$ \gamma =\lim_{n\rightarrow \infty } \biggl( 1+\frac{1}{2}+ \frac{1}{3}+ \cdots +\frac{1}{n}-\log n \biggr) =0.5772156649\ldots\, , $$
the generalized Euler–Mascheroni constant is defined by
$$ \gamma (a)=\lim_{n\rightarrow \infty } \biggl[ \frac{1}{a}+ \frac{1}{a+1}+ \cdots +\frac{1}{a+n-1}-\log \biggl( \frac{a+n-1}{a} \biggr) \biggr] $$
for \(a>0\).
Recently, the evaluations for γ and \(\gamma (a)\) have been the subject of intensive research. In the article, we provide several sharp upper and lower bounds for the generalized Euler–Mascheroni constant \(\gamma (a)\). As applications, we improve some previously results on the Euler–Mascheroni constant γ. The idea presented may stimulate further research in the theory of special function.

4 Conclusion

In this paper, we present several best possible approximations for the generalized Euler–Mascheroni constant
$$ \gamma (a)=\lim_{n\rightarrow \infty } \biggl[ \frac{1}{a}+ \frac{1}{a+1}+ \cdots +\frac{1}{a+n-1}-\log \biggl( \frac{a+n-1}{a} \biggr) \biggr] $$
and improve some well-known bounds for the Euler–Mascheroni constant,
$$ \gamma =\lim_{n\rightarrow \infty } \biggl( 1+\frac{1}{2}+ \frac{1}{3}+ \cdots +\frac{1}{n}-\log n \biggr) =0.5772156649\ldots\,. $$

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 11401531, 11601485), the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101), the Natural Science Foundation of Zhejiang Province (Grant No. LQ17A010010) and the Science Foundation of Zhejiang Sci-Tech University (Grant No. 14062093-Y).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Knopp, K.: Theory and Applications of Infinite Series. Dover Publications, New York (1990) Knopp, K.: Theory and Applications of Infinite Series. Dover Publications, New York (1990)
2.
go back to reference Chen, C.-P., Qi, F.: The best bounds of the n-th harmonic number. Glob. J. Appl. Math. Math. Sci. 1(1), 41–49 (2008) Chen, C.-P., Qi, F.: The best bounds of the n-th harmonic number. Glob. J. Appl. Math. Math. Sci. 1(1), 41–49 (2008)
3.
go back to reference Niu, D.-W., Zhang, Y.-J., Qi, F.: A double inequality for the harmonic number in terms of the hyperbolic cosine. Turk. J. Anal. Number Theory 2(6), 223–225 (2014) CrossRef Niu, D.-W., Zhang, Y.-J., Qi, F.: A double inequality for the harmonic number in terms of the hyperbolic cosine. Turk. J. Anal. Number Theory 2(6), 223–225 (2014) CrossRef
4.
go back to reference Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH
5.
go back to reference Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018)
7.
8.
go back to reference Mortici, C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. 8(1), 99–107 (2010) MathSciNetCrossRefMATH Mortici, C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. 8(1), 99–107 (2010) MathSciNetCrossRefMATH
9.
go back to reference Mortici, C.: Improved convergence towards generalized Euler–Mascheroni constant. Appl. Math. Comput. 215(9), 3443–3448 (2010) MathSciNetMATH Mortici, C.: Improved convergence towards generalized Euler–Mascheroni constant. Appl. Math. Comput. 215(9), 3443–3448 (2010) MathSciNetMATH
10.
go back to reference Chen, C.-P., Srivastava, H.M.: New representations for the Lugo and Euler–Mascheroni constants. Appl. Math. Lett. 24(7), 1239–1244 (2011) MathSciNetCrossRefMATH Chen, C.-P., Srivastava, H.M.: New representations for the Lugo and Euler–Mascheroni constants. Appl. Math. Lett. 24(7), 1239–1244 (2011) MathSciNetCrossRefMATH
11.
go back to reference Negoi, T.: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 15, 111–113 (1997) Negoi, T.: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 15, 111–113 (1997)
12.
go back to reference Qiu, S.-L., Vuorinen, M.: Some properties of the gamma and psi functions, with applications. Math. Comput. 74(250), 723–742 (2005) MathSciNetCrossRefMATH Qiu, S.-L., Vuorinen, M.: Some properties of the gamma and psi functions, with applications. Math. Comput. 74(250), 723–742 (2005) MathSciNetCrossRefMATH
13.
go back to reference DeTemple, D.W.: A geometric look at sequences that converge to Euler’s constant. Coll. Math. J. 37(2), 128–131 (2006) MathSciNetCrossRef DeTemple, D.W.: A geometric look at sequences that converge to Euler’s constant. Coll. Math. J. 37(2), 128–131 (2006) MathSciNetCrossRef
14.
go back to reference Chen, C.-P.: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Collect. 12(3), Article ID 11 (2009) Chen, C.-P.: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Collect. 12(3), Article ID 11 (2009)
16.
go back to reference Berinde, V., Mortici, C.: New sharp estimates of the generalized Euler–Mascheroni constant. Math. Inequal. Appl. 16(1), 279–288 (2013) MathSciNetMATH Berinde, V., Mortici, C.: New sharp estimates of the generalized Euler–Mascheroni constant. Math. Inequal. Appl. 16(1), 279–288 (2013) MathSciNetMATH
18.
go back to reference Guo, B.-N., Qi, F.: Sharp inequalities for the psi function and harmonic numbers. Analysis 34(2), 201–208 (2014) MathSciNetMATH Guo, B.-N., Qi, F.: Sharp inequalities for the psi function and harmonic numbers. Analysis 34(2), 201–208 (2014) MathSciNetMATH
19.
go back to reference Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017) MathSciNetMATH
20.
go back to reference Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929–936 (2017) MathSciNetCrossRef Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929–936 (2017) MathSciNetCrossRef
21.
go back to reference Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautsch inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautsch inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH
22.
go back to reference Guo, B.-N., Qi, F.: Sharp bounds for harmonic numbers. Appl. Math. Comput. 218(3), 991–995 (2011) MathSciNetMATH Guo, B.-N., Qi, F.: Sharp bounds for harmonic numbers. Appl. Math. Comput. 218(3), 991–995 (2011) MathSciNetMATH
23.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNetMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNetMATH
24.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRefMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRefMATH
25.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U. S. Government Printing Office, Washington (1964) MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U. S. Government Printing Office, Washington (1964) MATH
27.
Metadata
Title
Optimal bounds for the generalized Euler–Mascheroni constant
Authors
Ti-Ren Huang
Bo-Wen Han
Xiao-Yan Ma
Yu-Ming Chu
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1711-1

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner