Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2016

Open Access 01-12-2016 | Research

Optimal bounds for two Sándor-type means in terms of power means

Authors: Tie-Hong Zhao, Wei-Mao Qian, Ying-Qing Song

Published in: Journal of Inequalities and Applications | Issue 1/2016

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In the article, we prove that the double inequalities \(M_{\alpha }(a,b)< S_{QA}(a,b)< M_{\beta}(a,b)\) and \(M_{\lambda }(a,b)< S_{AQ}(a,b)< M_{\mu}(a,b)\) hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\alpha\leq\log 2/[1+\log2-\sqrt{2}\log(1+\sqrt{2})]=1.5517\ldots\) , \(\beta\geq5/3\), \(\lambda\leq4\log2/[4+2\log2-\pi]=1.2351\ldots\) and \(\mu\geq4/3\), where \(S_{QA}(a,b)=A(a,b)e^{Q(a,b)/M(a,b)-1}\) and \(S_{AQ}(a,b)=Q(a,b)e^{A(a,b)/T(a,b)-1}\) are the Sándor-type means, \(A(a,b)=(a+b)/2\), \(Q(a,b)=\sqrt{(a^{2}+b^{2})/2}\), \(T(a,b)=(a-b)/[2\arctan((a-b)/(a+b))]\), and \(M(a,b)=(a-b)/[2\sinh ^{-1}((a-b)/(a+b))]\) are, respectively, the arithmetic, quadratic, second Seiffert, and Neuman-Sándor means.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

For \(p\in\mathbb{R}\) and \(a,b>0\) with \(a\neq b\), the pth power mean \(M_{p}(a,b)\) and Schwab-Borchardt mean \(\operatorname{SB}(a,b)\) [1, 2] of a and b are, respectively, given by
$$ M_{p}(a,b)= \textstyle\begin{cases} (\frac{a^{p}+b^{p}}{2} )^{1/p},& p\neq0, \\ \sqrt{ab}, & p=0 \end{cases} $$
(1.1)
and
$$ \operatorname{SB}(a,b)= \textstyle\begin{cases} \frac{\sqrt{b^{2}-a^{2}}}{\cos^{-1}{(a/b)}}, & a< b, \\ \frac{\sqrt{a^{2}-b^{2}}}{\cosh^{-1}{(a/b)}}, & a>b, \end{cases} $$
where \(\cos^{-1}(x)\) and \(\cosh^{-1}(x)=\log(x+\sqrt{x^{2}-1})\) are the inverse cosine and inverse hyperbolic cosine functions, respectively.
It is well known that the power mean \(M_{p}(a,b)\) is continuous and strictly increasing with respect to \(p\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\), the Schwab-Borchardt mean \(\operatorname{SB}(a,b)\) is strictly increasing in both a and b, nonsymmetric and homogeneous of degree 1 with respect to a and b. Many symmetric bivariate means are special cases of the Schwab-Borchardt mean. For example, \(P(a,b)=(a-b)/[2\arcsin((a-b)/(a+b))]=\operatorname{SB}[G(a,b), A(a,b)]\) is the first Seiffert mean, \(T(a,b)=(a-b)/[2\arctan ((a-b)/(a+b))]=\operatorname{SB}[A(a,b), Q(a,b)]\) is the second Seiffert mean, \(M(a,b)=(a-b)/[2\sinh^{-1}((a-b)/(a+b))]=\operatorname{SB}[Q(a,b), A(a,b)]\) is the Neuman-Sándor mean, \(L(a,b)=(a-b)/[2\tanh ^{-1}((a-b)/(a+b))]=\operatorname{SB}[A(a,b), G(a,b)]\) is the logarithmic mean, where \(\sinh^{-1}(x)=\log(x+\sqrt{1+x^{2}})\) is the inverse hyperbolic sine function, \(\tanh^{-1}(x)=\log[(1+x)/(1-x)]/2\) is the inverse hyperbolic tangent function, and \(G(a,b)=\sqrt{ab}\), \(A(a,b)=(a+b)/2\), and \(Q(a,b)=\sqrt{(a^{2}+b^{2})/2}\) are the geometric, arithmetic, and quadratic means of a and b, respectively.
The Sándor mean \(X(a,b)=A(a,b)e^{G(a,b)/P(a,b)-1}\) [3] can be rewritten as \(X(a,b)= A(a,b)e^{G(a,b)/\operatorname{SB}[G(a,b), A(a,b)]-1}\). Yang [4] proved that \(S(a,b)=be^{a/\operatorname{SB}(a,b)-1}\) is a mean of a and b, and introduced two Sándor-type means \(S_{QA}(a,b)\) and \(S_{AQ}(a,b)\) as follows:
$$\begin{aligned}& S_{QA}(a,b)\triangleq S\bigl[Q(a,b), A(a,b)\bigr] \\& \hphantom{S_{QA}(a,b)}=A(a,b)e^{Q(a,b)/\operatorname{SB}[Q(a,b), A(a,b)]-1}=A(a,b)e^{Q(a,b)/M(a,b)-1}, \end{aligned}$$
(1.2)
$$\begin{aligned}& S_{AQ}(a,b)\triangleq S\bigl[A(a,b), Q(a,b)\bigr] \\& \hphantom{S_{AQ}(a,b)}=Q(a,b)e^{A(a,b)/\operatorname{SB}[A(a,b), Q(a,b)]-1}=Q(a,b)e^{A(a,b)/T(a,b)-1}. \end{aligned}$$
(1.3)
Recently, the bounds involving the power mean for certain bivariate means and Gaussian hypergeometric function have attracted the attention of many researchers [521].
Radó [22] (see also [2325]) proved that the double inequalities
$$ M_{p}(a,b)< L(a,b)< M_{q}(a,b),\qquad M_{\lambda}(a,b)< I(a,b)< M_{\mu}(a,b) $$
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq0\), \(q\geq 1/3\), \(\lambda\leq2/3\), and \(\mu\geq\log2\), where \(I(a,b)=(b^{b}/a^{a})^{1/(b-a)}/e\) is the identric mean of a and b.
In [2629], the authors proved that the double inequality
$$ M_{p}(a,b)< T^{\ast}(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq3/2\) and \(q\geq\log2/(\log\pi-\log2)\), where \(T^{\ast}(a,b)=\frac{2}{\pi}\int _{0}^{\pi/2}\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}\, d\theta\) is the Toader mean of a and b.
Jagers [30], Hästö [31, 32], Costin and Toader [33], and Li et al. [34] proved that \(p_{1}=\log2/\log\pi\), \(q_{1}=2/3\), \(p_{2}=\log2/(\log\pi-\log2)\), and \(q_{2}=5/3\) are the best possible parameters such that the double inequalities
$$ M_{p_{1}}(a,b)< P(a,b)< M_{q_{1}}(a,b),\qquad M_{p_{2}}(a,b)< T(a,b)< M_{q_{2}}(a,b) $$
hold for all \(a, b>0\) with \(a\neq b\).
In [3538], the authors proved that the double inequalities
$$\begin{aligned}& M_{\lambda_{1}}(a,b)< M(a,b)< M_{\mu_{1}}(a,b), \\& M_{\lambda_{2}}(a,b)< U(a,b)< M_{\mu_{2}}(a,b), \\& M_{\lambda_{3}}(a,b)< X(a,b)< M_{\mu_{3}}(a,b) \end{aligned}$$
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq \log2/\log[2\log(1+\sqrt{2})]\), \(\mu_{1}\geq4/3\), \(\lambda_{2}\leq 2\log2/(2\log\pi-\log2)\), \(\mu_{2}\geq4/3\), \(\lambda_{3}\leq1/3\), and \(\mu_{3}\geq\log2/(1+\log2)\), where \(U(a,b)=(a-b)/ [\sqrt {2}\arctan (\frac{a-b}{\sqrt{2ab}} ) ]\) is the Yang mean of a and b.
The main purpose of this paper is to present the best possible parameters α, β, λ, and μ such that the double inequalities
$$ M_{\alpha}(a,b)< S_{QA}(a,b)< M_{\beta}(a,b), \qquad M_{\lambda }(a,b)< S_{AQ}(a,b)< M_{\mu}(a,b) $$
hold for all \(a, b>0\) with \(a\neq b\).

2 Lemmas

In order to prove our main results we need two lemmas, which we present in this section.
Lemma 2.1
Let \(p\in\mathbb{R}\) and
$$ f(x)=(p-1)x^{p+1}-3x^{p}+3x^{p-2}+(1-p)x^{p-3}+3x^{2p-2}+x^{2p-3}-x-3. $$
(2.1)
Then the following statements are true:
(1)
\(f(x)>0\) for all \(x\in(1, \infty)\) if \(p=5/3\);
 
(2)
there exists \(\sigma\in(1, \infty)\) such that \(f(x)<0\) for \(x\in (1, \sigma)\) and \(f(x)>0\) for \(x\in(\sigma, \infty)\) if \(p=\log2/[1+\log2-\sqrt{2}\log(1+\sqrt{2})]=1.5517\ldots\) .
 
Proof
For part (1), if \(p=5/3\), then (2.1) leads to
$$ f(x)=\frac{ (x^{\frac{2}{3}}-1 ) (x^{\frac{1}{3}}-1 )^{2}}{3x^{\frac{4}{3}}} \bigl(2x^{\frac{8}{3}}+4x^{\frac{7}{3}}+8x^{2}+3x^{\frac {5}{3}}+9x^{\frac{4}{3}}+3x+8x^{\frac{2}{3}}+4x^{\frac{1}{3}}+2 \bigr). $$
(2.2)
Therefore, part (1) follows from (2.2).
For part (2), let \(p=\log2/[1+\log2-\sqrt{2}\log(1+\sqrt {2})]=1.5517\ldots\) , \(f_{1}(x)=f^{\prime}(x)\), \(f_{2}(x)=x^{5-p}f^{\prime}_{1}(x)\) and \(f_{3}(x)=f^{\prime}_{2}(x)\). Then simple computations lead to
$$\begin{aligned}& f(1)=0, \qquad \lim_{x\rightarrow+\infty}f(x)=+\infty, \end{aligned}$$
(2.3)
$$\begin{aligned}& f_{1}(1)=12 \biggl(p-\frac{5}{3} \biggr)< 0, \qquad \lim _{x\rightarrow+\infty }f_{1}(x)=+\infty, \end{aligned}$$
(2.4)
$$\begin{aligned}& f_{2}(1)=24 \biggl(p-\frac{3}{2} \biggr) \biggl(p- \frac{5}{3} \biggr)< 0,\qquad \lim_{x\rightarrow+\infty}f_{2}(x)=+ \infty, \end{aligned}$$
(2.5)
$$\begin{aligned}& f_{3}(x)=6 \bigl(p^{2}-1 \bigr) (2p-3)x^{p}+2p(p-2) (2p-3)x^{p-1} \\& \hphantom{f_{3}(x)={}}{}+4p \bigl(p^{2}-1 \bigr)x^{3}-9p(p-1)x^{2}+3(p-2) (p-3). \end{aligned}$$
(2.6)
Note that
$$\begin{aligned}& 2p(p-2) (2p-3)x^{p-1}>2p(p-2) (2p-3)x^{p}, \qquad -9p(p-1)x^{2}>-9p(p-1)x^{3}, \end{aligned}$$
(2.7)
$$\begin{aligned}& p(p-1) (4p-5)x^{3}>p(p-1) (4p-5) \end{aligned}$$
(2.8)
for \(x>1\), and
$$\begin{aligned}& 16p^{3}-32p^{2}+18>16\times1.55^{3}-32 \times1.552^{2}+18=0.503472>0, \end{aligned}$$
(2.9)
$$\begin{aligned}& 4p^{3}-6p^{2}-10p+18>4\times1.5^{3}-6 \times1.6^{2}-10\times1.6+18=0.14>0. \end{aligned}$$
(2.10)
It follows from (2.6)-(2.10) that
$$\begin{aligned} f_{3}(x) >&6 \bigl(p^{2}-1 \bigr) (2p-3)x^{p}+2p(p-2) (2p-3)x^{p} \\ &{}+4p \bigl(p^{2}-1 \bigr)x^{3}-9p(p-1)x^{3}+3(p-2) (p-3) \\ =& \bigl(16p^{3}-32p^{2}+18 \bigr)x^{p}+p(p-1) (4p-5)x^{3}+3(p-2) (p-3) \\ >& \bigl(16p^{3}-32p^{2}+18 \bigr)x^{p}+p(p-1) (4p-5)+3(p-2) (p-3) \\ =& \bigl(16p^{3}-32p^{2}+18 \bigr)x^{p}+ \bigl(4p^{3}-6p^{2}-10p+18 \bigr)>0 \end{aligned}$$
(2.11)
for \(x>1\).
Inequality (2.11) implies that \(f_{2}(x)\) is strictly increasing on \((1, \infty)\). Then from (2.5) we know that there exists \(\sigma_{1}>1\) such that \(f_{1}(x)\) is strictly decreasing on \((1, \sigma_{1}]\) and strictly increasing on \([\sigma_{1}, \infty)\).
It follows from (2.4) and the piecewise monotonicity of \(f_{1}(x)\) that there exists \(\sigma_{2}>1\) such that \(f(x)\) is strictly decreasing on \((1, \sigma_{2}]\) and strictly increasing on \([\sigma_{2}, \infty)\).
Therefore, part (2) follows from (2.3) and the piecewise monotonicity of \(f(x)\). □
Lemma 2.2
Let \(p\in\mathbb{R}\), and
$$ g(x)=(p-1)x^{p+1}-(p+1)x^{p}+(p+1)x^{p-1}+(1-p)x^{p-2}+x^{2p-1}+x^{2p-2}-x-1. $$
(2.12)
Then the following statements are true:
(1)
\(g(x)>0\) for all \(x\in(1, \infty)\) if \(p=4/3\);
 
(2)
there exists \(\tau\in(1, \infty)\) such that \(g(x)<0\) for \(x\in (1, \tau)\) and \(g(x)>0\) for \(x\in(\tau, \infty)\) if \(p=4\log2/[4+2\log2-\pi]=1.2351\ldots\) .
 
Proof
For part (1), if \(p=4/3\), then (2.12) becomes
$$ g(x)=\frac{ (x^{1/3}-1 )^{3}}{3x^{2/3}} \bigl(x^{2}+3x^{5/3}+9x^{4/3}+12x+9x^{2/3}+3x^{1/3}+1 \bigr). $$
(2.13)
Therefore, part (1) follows from (2.13).
For part (2), let \(p=4\log2/[4+2\log2-\pi]=1.2351\ldots\) , \(g_{1}(x)=g^{\prime}(x)\), \(g_{2}(x)=x^{4-p}g^{\prime}_{1}(x)/(p-1)\), and \(g_{3}(x)=g^{\prime}_{2}(x)\). Then simple computations lead to
$$\begin{aligned}& g(1)=0, \qquad \lim_{x\rightarrow+\infty}g(x)=+\infty, \end{aligned}$$
(2.14)
$$\begin{aligned}& g_{1}(1)=6 \biggl(p-\frac{4}{3} \biggr)< 0,\qquad \lim _{x\rightarrow+\infty }g_{1}(x)=+\infty, \end{aligned}$$
(2.15)
$$\begin{aligned}& g_{2}(1)=12 \biggl(p-\frac{4}{3} \biggr)< 0, \qquad \lim _{x\rightarrow+\infty }g_{2}(x)=+\infty, \end{aligned}$$
(2.16)
$$\begin{aligned}& g_{3}(x)=2(p+1) (2p-1)x^{p}+2p(2p-3)x^{p-1} \\& \hphantom{g_{3}(x)={}}{}+3p(p+1)x^{2}-2p(p+1)x+(p+1) (p-2). \end{aligned}$$
(2.17)
Note that
$$\begin{aligned}& 2p(2p-3)x^{p-1}>2p(2p-3)x^{p}, \\& 2p(p+1)x< 2p(p+1)x^{2}, \\& (p+1) (p-2)>(p+1) (p-2)x^{2} \end{aligned}$$
(2.18)
for \(x>1\).
It follows from (2.17) and (2.18) that
$$\begin{aligned} g_{3}(x) >&2(p+1) (2p-1)x^{p}+2p(2p-3)x^{p}+3p(p+1)x^{2} \\ &{}-2p(p+1)x^{2}+(p+1) (p-2)x^{2} \\ =&2 \bigl(4p^{2}-2p-1 \bigr)x^{p}+2\bigl(p^{2}-1 \bigr)x^{2}>0 \end{aligned}$$
(2.19)
for \(x>1\).
Inequality (2.19) implies that \(g_{2}(x)\) is strictly increasing on \((1, \infty)\). Then from (2.16) we know that there exists \(\tau_{1}\in(1, \infty)\) such that \(g_{1}(x)\) is strictly decreasing on \((1, \tau_{1}]\) and strictly increasing on \([\tau_{1}, \infty)\).
It follows from (2.15) and the piecewise monotonicity of \(g_{1}(x)\) that there exists \(\tau_{2}\in(1, \infty)\) such that \(g(x)\) is strictly decreasing on \((1, \tau_{2}]\) and strictly increasing on \([\tau_{2}, \infty)\).
Therefore, part (2) follows from (2.14) and the piecewise monotonicity of \(g(x)\). □

3 Main results

Theorem 3.1
The double inequality
$$ M_{\alpha}(a,b)< S_{QA}(a,b)< M_{\beta}(a,b) $$
holds for all \(a,b>0\) with \(a\neq b\) if and only if \(\alpha\leq\log 2/[1+\log2-\log(1+\sqrt{2})]=1.5517\ldots\) and \(\beta\geq5/3\).
Proof
Since both \(S_{QA}(a,b)\) and \(M_{p}(a,b)\) are symmetric and homogeneous of degree one, we assume that \(a>b\). Let \(x=a/b>1\) and \(p>0\). Then (1.1) and (1.2) lead to
$$\begin{aligned}& \log \bigl[S_{QA}(a,b) \bigr]-\log \bigl[M_{p}(a,b) \bigr] \\& \quad =\log \biggl(\frac{x+1}{2} \biggr)+\frac{\sqrt{2(x^{2}+1)}\sinh^{-1} (\frac{x-1}{x+1} )}{x-1}- \frac{1}{p}\log \biggl(\frac {x^{p}+1}{2} \biggr)-1. \end{aligned}$$
(3.1)
Let
$$ F(x)=\log \biggl(\frac{x+1}{2} \biggr)+\frac{\sqrt{2(x^{2}+1)}\sinh ^{-1} (\frac{x-1}{x+1} )}{x-1}- \frac{1}{p}\log \biggl(\frac {x^{p}+1}{2} \biggr)-1. $$
(3.2)
Then elaborated computations lead to
$$\begin{aligned}& F\bigl(1^{+}\bigr)=0, \end{aligned}$$
(3.3)
$$\begin{aligned}& \lim_{x\rightarrow+\infty}F(x)=\sqrt{2}\log(1+\sqrt{2})-(1+\log 2)+ \frac{1}{p}\log2, \end{aligned}$$
(3.4)
$$\begin{aligned}& F^{\prime}(x)=\frac{2(x+1)}{(x-1)^{2}\sqrt{2(x^{2}+1)}}F_{1}(x), \end{aligned}$$
(3.5)
where
$$\begin{aligned}& F_{1}(x)=\frac{\sqrt{2(x^{2}+1)}(x-1)(x^{p-1}+1)}{2(x+1)(x^{p}+1)}-\sinh ^{-1} \biggl( \frac{x-1}{x+1} \biggr), \\& F_{1}(1)=0, \qquad \lim_{x\rightarrow\infty}F_{1}(x)= \frac{\sqrt{2}}{2}-\log (1+\sqrt{2})=-0.1742\ldots< 0, \end{aligned}$$
(3.6)
$$\begin{aligned}& F_{1}^{\prime}(x)=-\frac{x(x-1)}{(x+1)^{2}(x^{p}+1)^{2}\sqrt{2(x^{2}+1)}}f(x), \end{aligned}$$
(3.7)
where \(f(x)\) is defined by (2.1).
We divide the proof into four cases.
Case 1.1. \(p=\log2/[1+\log2-\log(1+\sqrt{2})]\). Then it follows from Lemma 2.1(2) and (3.7) that there exists \(\sigma\in(1, \infty)\) such that \(F_{1}(x)\) is strictly increasing on \((1, \sigma]\) and strictly decreasing on \([\sigma, \infty)\).
Equations (3.5) and (3.6) together with the piecewise monotonicity of \(F_{1}(x)\) lead to the conclusion that there exists \(\sigma_{0}\in(1, \infty)\) such that \(F(x)\) is strictly increasing on \((1, \sigma_{0}]\) and strictly decreasing on \([\sigma_{0}, \infty)\).
Note that (3.4) becomes
$$ \lim_{x\rightarrow+\infty}F(x)=0. $$
(3.8)
Therefore,
$$ S_{QA}(a,b)>M_{\log2/[1+\log2-\log(1+\sqrt{2})]}(a,b) $$
for all \(a, b>0\) with \(a\neq b\) follows from (3.1)-(3.3) and (3.8) together with the piecewise monotonicity of \(F(x)\).
Case 1.2. \(p=5/3\). Then it follows from Lemma 2.1(1) and (3.7) that \(F_{1}(x)\) is strictly decreasing on \((1, \infty)\).
Therefore,
$$ S_{QA}(a,b)< M_{5/3}(a,b) $$
for all \(a, b>0\) with \(a\neq b\) follows from (3.1)-(3.3), (3.5), (3.6), and the monotonicity of \(F(x)\).
Case 1.3. \(p>\log2/[1+\log2-\log(1+\sqrt{2})]\). Then (3.4) leads to
$$ \lim_{x\rightarrow+\infty}F(x)< 0. $$
(3.9)
Equations (3.1) and (3.2) together with inequality (3.9) imply that there exists large enough \(C_{0}>1\) such that
$$ S_{QA}(a,b)< M_{p}(a,b) $$
for all \(a, b>0\) with \(a/b\in(C_{0}, \infty)\).
Case 1.4. \(1< p<5/3\). Let \(x>0\), \(x\rightarrow0\), then making use of (1.1) and (1.2) together with the Taylor expansion we get
$$\begin{aligned}& \begin{aligned}[b] &S_{QA}(1, 1+x)-M_{p}(1,1+x) \\ &\quad = \biggl(1+\frac{x}{2} \biggr)e^{\sqrt{2(x^{2}+2x+2)}\sinh ^{-1}[x/(2+x)]/x-1}- \biggl[ \frac{1+(1+x)^{p}}{2} \biggr]^{1/p} \\ &\quad =\frac{5-3p}{24}x^{2}+o\bigl(x^{2}\bigr). \end{aligned} \end{aligned}$$
(3.10)
Equation (3.10) implies that there exists small enough \(\delta_{0}>0\) such that
$$ S_{QA}(1, 1+x)>M_{p}(1, 1+x) $$
for \(x\in(0, \delta_{0})\).
Therefore, Theorem 3.1 follows easily from Cases 1.1-1.4 and the monotonicity of the function \(p\rightarrow M_{p}(a,b)\). □
Theorem 3.2
The double inequality
$$ M_{\lambda}(a,b)< S_{AQ}(a,b)< M_{\mu}(a,b) $$
holds for all \(a,b>0\) with \(a\neq b\) if and only if \(\lambda\leq4\log 2/[4+2\log2-\pi]=1.2351\ldots\) and \(\beta\geq4/3\).
Proof
Since both \(S_{AQ}(a,b)\) and \(M_{p}(a,b)\) are symmetric and homogeneous of degree one, we assume that \(a>b\). Let \(x=a/b>1\) and \(p>0\). Then (1.1) and (1.3) lead to
$$\begin{aligned}& \log \bigl[S_{AQ}(a,b) \bigr]-\log \bigl[M_{p}(a,b) \bigr] \\& \quad =\frac{1}{2}\log \biggl(\frac{x^{2}+1}{2} \biggr)+ \frac{x+1}{x-1}\arctan \biggl(\frac{x-1}{x+1} \biggr)-\frac{1}{p}\log \biggl(\frac {x^{p}+1}{2} \biggr)-1. \end{aligned}$$
(3.11)
Let
$$ G(x)=\frac{1}{2}\log \biggl(\frac{x^{2}+1}{2} \biggr)+ \frac {x+1}{x-1}\arctan \biggl(\frac{x-1}{x+1} \biggr)-\frac{1}{p}\log \biggl(\frac {x^{p}+1}{2} \biggr)-1. $$
(3.12)
Then elaborated computations lead to
$$\begin{aligned}& G\bigl(1^{+}\bigr)=0, \end{aligned}$$
(3.13)
$$\begin{aligned}& \lim_{x\rightarrow+\infty}G(x)=\frac{\pi}{4}-\frac{1}{2}\log2-1+ \frac {1}{p}\log2, \end{aligned}$$
(3.14)
$$\begin{aligned}& G^{\prime}(x)=\frac{2}{(x-1)^{2}}G_{1}(x), \end{aligned}$$
(3.15)
where
$$\begin{aligned}& G_{1}(x)=\frac{(x-1)(x^{p-1}+1)}{2(x^{p}+1)}-\arctan \biggl(\frac {x-1}{x+1} \biggr), \\& G_{1}(1)=0, \qquad \lim_{x\rightarrow+\infty}G_{1}(x)= \frac{1}{2}-\frac{\pi}{4}< 0, \end{aligned}$$
(3.16)
$$\begin{aligned}& G^{\prime}_{1}(x)=-\frac{x-1}{2(x^{2}+1)^{2}(x^{p}+1)^{2}}g(x), \end{aligned}$$
(3.17)
where \(g(x)\) is defined by (2.12).
We divide the proof into four cases.
Case 2.1. \(p=4\log2/[4+2\log2-\pi]\). Then it follows from Lemma 2.2(2) and (3.17) that there exists \(\tau\in(1, \infty)\) such that \(G_{1}(x)\) is strictly increasing on \((1, \tau]\) and strictly decreasing on \([\tau, \infty)\).
Equations (3.15) and (3.16) together with the piecewise monotonicity of \(G_{1}(x)\) lead to the conclusion that there exists \(\tau_{0}\in(1, \infty)\) such that \(G(x)\) is strictly increasing on \((1, \tau_{0}]\) and strictly decreasing on \([\tau_{0}, \infty)\).
Note that (3.14) becomes
$$ \lim_{x\rightarrow+\infty}G(x)=0. $$
(3.18)
Therefore,
$$ S_{AQ}(a,b)>M_{4\log2/[4+2\log2-\pi]}(a,b) $$
follows from (3.11)-(3.13) and (3.18) together with the piecewise monotonicity of \(G(x)\).
Case 2.2. \(p=4/3\). Then Lemma 2.2(2) and (3.17) imply that \(G_{1}(x)\) is strictly decreasing on \((1, \infty)\).
Therefore,
$$ S_{AQ}(a,b)< M_{4/3}(a,b) $$
follows easily from (3.11)-(3.13), (3.15), (3.16), and the monotonicity of \(G_{1}(x)\).
Case 2.3. \(p>4\log2/[4+2\log2-\pi]\). Then (3.14) leads to
$$ \lim_{x\rightarrow+\infty}G(x)< 0. $$
(3.19)
Equations (3.11) and (3.12) and inequality (3.19) imply that there exists large enough \(C_{1}>1\) such that
$$ S_{AQ}(a,b)< M_{p}(a,b) $$
for all \(a, b>0\) with \(a/b\in(C_{1}, \infty)\).
Case 2.4. \(0< p<4/3\). Let \(x>0\) and \(x\rightarrow0\). Then making use of (1.1) and (1.3) together with the Taylor expansion we get
$$\begin{aligned}& S_{AQ}(1, 1+x)-M_{p}(1,1+x) \\& \quad =\sqrt{\frac{1+(1+x)^{2}}{2}}e^{(2+x)\arctan[x/(2+x)]/x-1}- \biggl[\frac {1+(1+x)^{p}}{2} \biggr]^{1/p} \\& \quad =\frac{4-3p}{24}x^{2}+o\bigl(x^{2}\bigr). \end{aligned}$$
(3.20)
Equation (3.20) implies that there exists small enough \(\delta_{1}>0\) such that
$$ S_{AQ}(1, 1+x)>M_{p}(1,1+x) $$
for \(x\in(0, \delta_{1})\).
Therefore, Theorem 3.2 follows easily from Cases 2.1-2.4 and the monotonicity of the function \(p\rightarrow M_{p}(a,b)\). □

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions. The research was supported by the Natural Science Foundation of China under Grants 11301127, 11371125 and 61374086, and the Natural Science Foundation of Hunan Province under Grant 12C0577.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literature
2.
3.
go back to reference Sándor, J: Two sharp inequalities for trigonometric and hyperbolic functions. Math. Inequal. Appl. 15(2), 409-413 (2012) MathSciNetMATH Sándor, J: Two sharp inequalities for trigonometric and hyperbolic functions. Math. Inequal. Appl. 15(2), 409-413 (2012) MathSciNetMATH
4.
go back to reference Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013) CrossRef Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013) CrossRef
5.
go back to reference Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009) CrossRefMathSciNetMATH Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009) CrossRefMathSciNetMATH
6.
go back to reference Chu, Y-M, Xia, W-F: Two sharp inequalities for power mean, geometric mean, and harmonic mean. J. Inequal. Appl. 2009, Article ID 741923 (2009) CrossRefMathSciNet Chu, Y-M, Xia, W-F: Two sharp inequalities for power mean, geometric mean, and harmonic mean. J. Inequal. Appl. 2009, Article ID 741923 (2009) CrossRefMathSciNet
7.
go back to reference Chu, Y-M, Qiu, Y-F, Wang, M-K: Sharp power mean bounds for the combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010) MathSciNet Chu, Y-M, Qiu, Y-F, Wang, M-K: Sharp power mean bounds for the combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010) MathSciNet
8.
go back to reference Chu, Y-M, Xia, W-F: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83-89 (2010) CrossRefMathSciNetMATH Chu, Y-M, Xia, W-F: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83-89 (2010) CrossRefMathSciNetMATH
9.
go back to reference Wang, M-K, Qiu, Y-F, Chu, Y-M, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011) CrossRefMathSciNetMATH Wang, M-K, Qiu, Y-F, Chu, Y-M, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011) CrossRefMathSciNetMATH
10.
go back to reference Li, Y-M, Long, B-Y, Chu, Y-M: Sharp bounds by the power mean for the generalized Heronian mean. J. Inequal. Appl. 2012, Article ID 129 (2012) CrossRefMathSciNet Li, Y-M, Long, B-Y, Chu, Y-M: Sharp bounds by the power mean for the generalized Heronian mean. J. Inequal. Appl. 2012, Article ID 129 (2012) CrossRefMathSciNet
11.
go back to reference Čižmešija, A: The optimal power mean bounds for two convex combinations of A-G-H means. J. Math. Inequal. 6(1), 33-41 (2012) MathSciNetMATH Čižmešija, A: The optimal power mean bounds for two convex combinations of A-G-H means. J. Math. Inequal. 6(1), 33-41 (2012) MathSciNetMATH
12.
go back to reference Chu, Y-M, Shi, M-Y, Jiang, Y-P: Optimal inequalities for the power, harmonic and logarithmic means. Bull. Iran. Math. Soc. 38(3), 597-606 (2012) MathSciNetMATH Chu, Y-M, Shi, M-Y, Jiang, Y-P: Optimal inequalities for the power, harmonic and logarithmic means. Bull. Iran. Math. Soc. 38(3), 597-606 (2012) MathSciNetMATH
13.
go back to reference Li, Y-M, Long, B-Y, Chu, Y-M: A best possible double inequality for power mean. J. Appl. Math. 2012, Article ID 379785 (2012) MathSciNet Li, Y-M, Long, B-Y, Chu, Y-M: A best possible double inequality for power mean. J. Appl. Math. 2012, Article ID 379785 (2012) MathSciNet
14.
go back to reference Čižmešija, A: A new sharp double inequality for generalized Heronian, harmonic and power means. Comput. Math. Appl. 64(4), 664-671 (2012) CrossRefMathSciNetMATH Čižmešija, A: A new sharp double inequality for generalized Heronian, harmonic and power means. Comput. Math. Appl. 64(4), 664-671 (2012) CrossRefMathSciNetMATH
15.
go back to reference Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012) CrossRefMathSciNetMATH Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012) CrossRefMathSciNetMATH
16.
go back to reference Qiu, S-L, Qiu, Y-F, Wang, M-K, Chu, Y-M: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions. Math. Inequal. Appl. 15(1), 237-245 (2012) MathSciNetMATH Qiu, S-L, Qiu, Y-F, Wang, M-K, Chu, Y-M: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions. Math. Inequal. Appl. 15(1), 237-245 (2012) MathSciNetMATH
17.
go back to reference Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012) CrossRefMathSciNetMATH Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012) CrossRefMathSciNetMATH
18.
go back to reference Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012) CrossRefMathSciNetMATH Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012) CrossRefMathSciNetMATH
19.
go back to reference Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013) CrossRefMathSciNetMATH Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013) CrossRefMathSciNetMATH
20.
go back to reference Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014) CrossRefMathSciNetMATH Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014) CrossRefMathSciNetMATH
21.
go back to reference Chu, Y-M, Wu, L-M, Song, Y-Q: Sharp power mean bounds for the one-parameter harmonic mean. J. Funct. Spaces 2015, Article ID 517647 (2015) MathSciNet Chu, Y-M, Wu, L-M, Song, Y-Q: Sharp power mean bounds for the one-parameter harmonic mean. J. Funct. Spaces 2015, Article ID 517647 (2015) MathSciNet
22.
go back to reference Radó, T: On convex functions. Trans. Am. Math. Soc. 37(2), 266-285 (1935) CrossRef Radó, T: On convex functions. Trans. Am. Math. Soc. 37(2), 266-285 (1935) CrossRef
23.
25.
go back to reference Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678-715, 15-18 (1980) MathSciNet Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678-715, 15-18 (1980) MathSciNet
26.
go back to reference Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1-7 (1997) (in Chinese) Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1-7 (1997) (in Chinese)
27.
go back to reference Qiu, S-L: The Muir mean and the complete elliptic integral of the second kind. J. Hangzhou Inst. Electron. Eng. 20(1), 28-33 (2000) (in Chinese) Qiu, S-L: The Muir mean and the complete elliptic integral of the second kind. J. Hangzhou Inst. Electron. Eng. 20(1), 28-33 (2000) (in Chinese)
28.
go back to reference Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) CrossRefMathSciNetMATH Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) CrossRefMathSciNetMATH
29.
go back to reference Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) CrossRefMathSciNetMATH Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) CrossRefMathSciNetMATH
30.
go back to reference Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. (4) 12(2), 230-231 (1994) Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. (4) 12(2), 230-231 (1994)
31.
go back to reference Hästö, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article 71 (2002) MathSciNet Hästö, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article 71 (2002) MathSciNet
32.
go back to reference Hästö, PA: Optimal inequalities between Seiffert’s mean and power means. Math. Inequal. Appl. 7(1), 47-53 (2004) MathSciNetMATH Hästö, PA: Optimal inequalities between Seiffert’s mean and power means. Math. Inequal. Appl. 7(1), 47-53 (2004) MathSciNetMATH
33.
go back to reference Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013) CrossRefMathSciNet Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013) CrossRefMathSciNet
34.
35.
36.
go back to reference Chu, Y-M, Long, B-Y: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013) MathSciNet Chu, Y-M, Long, B-Y: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013) MathSciNet
37.
go back to reference Yang, Z-H, Wu, L-M, Chu, Y-M: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, Article ID 401 (2014) CrossRefMathSciNet Yang, Z-H, Wu, L-M, Chu, Y-M: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, Article ID 401 (2014) CrossRefMathSciNet
38.
go back to reference Chu, Y-M, Yang, Z-H, Wu, L-M: Sharp power mean bounds for Sándor mean. Abstr. Appl. Anal. 2015, Article ID 172867 (2015) MathSciNet Chu, Y-M, Yang, Z-H, Wu, L-M: Sharp power mean bounds for Sándor mean. Abstr. Appl. Anal. 2015, Article ID 172867 (2015) MathSciNet
Metadata
Title
Optimal bounds for two Sándor-type means in terms of power means
Authors
Tie-Hong Zhao
Wei-Mao Qian
Ying-Qing Song
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2016
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-0989-0

Other articles of this Issue 1/2016

Journal of Inequalities and Applications 1/2016 Go to the issue

Premium Partner