Skip to main content
Top
Published in: Finance and Stochastics 1/2015

01-01-2015

Optimal investment and price dependence in a semi-static market

Author: Pietro Siorpaes

Published in: Finance and Stochastics | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper studies the problem of maximizing expected utility from terminal wealth in a semi-static market composed of derivative securities, which we assume can be traded only at time zero, and of stocks, which can be traded continuously in time and are modelled as locally bounded semimartingales. Using a general utility function defined on the positive half-line, we first study existence and uniqueness of the solution, and then we consider the dependence of the outputs of the utility maximization problem on the price of the derivatives, investigating not only stability but also differentiability, monotonicity, convexity and limiting properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In fact, one could take T to be a finite stopping time, as in Hugonnier and Kramkov [17], on which we rely.
 
2
If X=X′−X″, take N=1+X″ to get X/N≥−1; vice versa, if X/N≥−1, choose X″=N to get X=X′−X″.
 
3
We use the convention that the sup (inf) over an empty set takes the value −∞ (+∞).
 
4
The duality in (3.2) is with respect to the variable y only, with p playing the role of a parameter.
 
5
The interested reader can easily write down the alternative statement after comparing [26, Theorem 3] with [26, Theorem 4].
 
6
As we show in Theorem 3.2, a sufficient condition for the solution of problem (2.7) to lie in \(\mathcal{K}\) is that the final value of the optimal portfolio is bounded below by a strictly positive constant.
 
7
This follows from Theorem 3.3 and part 4 of Theorem 3.2.
 
8
Actually, [19, Theorem 3.1] states that \(\nabla_{p} \tilde{u}=\tilde{q}\); the missing minus sign in front of \(\tilde{q}\) (which, in [19], is called λ ) is a typo, whereas the term \(\partial_{x} \tilde{u}\) is missing because in this case \(\partial _{x} \tilde{u}=1\), as it follows from [19, Theorem 4.1].
 
9
Although this is stated only for \((x,q)\in\mathcal{K}\), it is easy to see that this automatically implies that it holds for any \((x,q)\in \bar{\mathcal{K}}\) (see the proof of [36, Lemma 6.1]).
 
10
Although stated only for finite convex functions, the theorem holds (with the same proof) for proper convex functions.
 
11
Since 4(b) implies that \(-\nabla v(\tilde{y},\tilde{y} p)\) exists at all \(\tilde{y}>0\), but only for the one fixed p which we used in problem (2.7), and not for all p such that \((1,p)\in\mathcal{L}\).
 
12
We can also give a more elegant proof that \(\tilde{u}(x,\cdot)\) is continuous, relying on a hard-to-prove theorem: since \(\tilde{v}\) is continuous and \(\tilde{u}(x)=\tilde{v}(\tilde{y})+x\tilde{y}\), where \(\tilde{y}= \partial_{x} \tilde{u}\), the continuity of \(\tilde{u}\) follows from the one of \(\tilde{y}\). To prove the latter, observe that the continuous bijection g of \((0,\infty)\times\mathcal{P}\) to itself given by \((y,p)\mapsto (-\partial_{y} \tilde{v}(y,p),p)\) has inverse \(g^{-1}(x,p)=(\tilde{y},p)\), and the map g is open, by Brouwer’s invariance domain theorem, so g −1 is continuous.
 
13
It is enough to show this in dimension one, where a function is convex iff it is the integral of an increasing function; since a locally increasing functions is increasing, the thesis follows.
 
14
Just remember to use the identities w 0=w λ λ(w 1w 0) and v λ w λ =1.
 
15
Because the perspective function is continuous, and sends convex sets to convex sets (as proved in [2, Sect. 2.3.3]). Alternatively, convexity can also easily be proved directly from the definition of \(\mathcal{P}(x,q)\).
 
16
This follows from ±L(x)=Lεx)/εoεx)/ε, taking limits for ε→0+.
 
17
Indeed, consider the convex function given by \(g(x,y):=\max(1-\sqrt{x},|y|)\) for x≥0 and g(x,y)=∞ if x<0; then ∂g(1,1)=(−∞,0]×{1}, yet the function h(y):=g(0,y)=max(1,|y|) is not differentiable at y=1 even if (a,b)(0,1) is constant over (a,b)∈∂g(1,1).
 
Literature
1.
go back to reference Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003) MATH Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003) MATH
2.
go back to reference Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) CrossRefMATH Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) CrossRefMATH
3.
go back to reference Brannath, W., Schachermayer, W.: A bipolar theorem for \(L^{0}_{+}(\varOmega,\mathcal{F},P)\). In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 349–354. Springer, Berlin (1999) CrossRef Brannath, W., Schachermayer, W.: A bipolar theorem for \(L^{0}_{+}(\varOmega,\mathcal{F},P)\). In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 349–354. Springer, Berlin (1999) CrossRef
4.
go back to reference Campi, L.: Arbitrage and completeness in financial markets with given n-dimensional distributions. Decis. Econ. Finan. 27, 57–80 (2004) CrossRefMATHMathSciNet Campi, L.: Arbitrage and completeness in financial markets with given n-dimensional distributions. Decis. Econ. Finan. 27, 57–80 (2004) CrossRefMATHMathSciNet
5.
go back to reference Campi, L.: A note on market completeness with American put options. In: Kabanov, Yu., et al. (eds.) Inspired by Finance. the Musiela Festschrift, pp. 73–82. Springer, Berlin (2014) CrossRef Campi, L.: A note on market completeness with American put options. In: Kabanov, Yu., et al. (eds.) Inspired by Finance. the Musiela Festschrift, pp. 73–82. Springer, Berlin (2014) CrossRef
6.
go back to reference Carassus, L., Rásonyi, M.: Optimal strategies and utility-based prices converge when agents preferences do. Math. Oper. Res. 32, 102–117 (2007) CrossRefMATHMathSciNet Carassus, L., Rásonyi, M.: Optimal strategies and utility-based prices converge when agents preferences do. Math. Oper. Res. 32, 102–117 (2007) CrossRefMATHMathSciNet
8.
9.
10.
go back to reference Delbaen, F., Schachermayer, W.: The Banach space of workable contingent claims in arbitrage theory. Ann. Inst. Henri Poincaré Probab. Stat. 33, 113–144 (1997) CrossRefMATHMathSciNet Delbaen, F., Schachermayer, W.: The Banach space of workable contingent claims in arbitrage theory. Ann. Inst. Henri Poincaré Probab. Stat. 33, 113–144 (1997) CrossRefMATHMathSciNet
11.
go back to reference Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) CrossRefMATHMathSciNet Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) CrossRefMATHMathSciNet
12.
14.
15.
go back to reference Hiriart-Urruty, J., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001) CrossRefMATH Hiriart-Urruty, J., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001) CrossRefMATH
16.
go back to reference Hubalek, F., Schachermayer, W.: When does convergence of asset price processes imply convergence of option prices? Math. Finance 8, 385–403 (1998) CrossRefMATHMathSciNet Hubalek, F., Schachermayer, W.: When does convergence of asset price processes imply convergence of option prices? Math. Finance 8, 385–403 (1998) CrossRefMATHMathSciNet
17.
go back to reference Hugonnier, J., Kramkov, D.: Optimal investment with random endowments in incomplete markets. Ann. Appl. Probab. 14, 845–864 (2004) CrossRefMATHMathSciNet Hugonnier, J., Kramkov, D.: Optimal investment with random endowments in incomplete markets. Ann. Appl. Probab. 14, 845–864 (2004) CrossRefMATHMathSciNet
18.
go back to reference Hugonnier, J., Kramkov, D., Schachermayer, W.: On utility-based pricing of contingent claims in incomplete markets. Math. Finance 15, 203–212 (2005) CrossRefMATHMathSciNet Hugonnier, J., Kramkov, D., Schachermayer, W.: On utility-based pricing of contingent claims in incomplete markets. Math. Finance 15, 203–212 (2005) CrossRefMATHMathSciNet
19.
22.
23.
go back to reference Kardaras, C.: The continuous behavior of the numéraire portfolio under small changes in information structure, probabilistic views and investment constraints. Stoch. Process. Appl. 120, 331–347 (2010) CrossRefMATHMathSciNet Kardaras, C.: The continuous behavior of the numéraire portfolio under small changes in information structure, probabilistic views and investment constraints. Stoch. Process. Appl. 120, 331–347 (2010) CrossRefMATHMathSciNet
24.
go back to reference Kardaras, C., Žitković, G.: Stability of the utility maximization problem with random endowment in incomplete markets. Math. Finance 21, 313–333 (2011) MATHMathSciNet Kardaras, C., Žitković, G.: Stability of the utility maximization problem with random endowment in incomplete markets. Math. Finance 21, 313–333 (2011) MATHMathSciNet
25.
go back to reference Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999) CrossRefMATHMathSciNet Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999) CrossRefMATHMathSciNet
26.
go back to reference Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003) CrossRefMATHMathSciNet Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003) CrossRefMATHMathSciNet
27.
go back to reference Kramkov, D., Sîrbu, M.: Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Probab. 16, 2140–2194 (2006) CrossRefMATHMathSciNet Kramkov, D., Sîrbu, M.: Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Probab. 16, 2140–2194 (2006) CrossRefMATHMathSciNet
29.
go back to reference Larsen, K., Žitković, G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117, 1642–1662 (2007) CrossRefMATH Larsen, K., Žitković, G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117, 1642–1662 (2007) CrossRefMATH
30.
32.
go back to reference Rockafellar, T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970) MATH Rockafellar, T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970) MATH
33.
go back to reference Schachermayer, W., Cvitanić, J., Wang, H.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5, 259–272 (2001) CrossRefMATHMathSciNet Schachermayer, W., Cvitanić, J., Wang, H.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5, 259–272 (2001) CrossRefMATHMathSciNet
34.
go back to reference Schweizer, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stoch. 12, 469–505 (2008) CrossRefMATHMathSciNet Schweizer, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stoch. 12, 469–505 (2008) CrossRefMATHMathSciNet
35.
go back to reference Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18, 77–114 (2008) CrossRefMATHMathSciNet Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18, 77–114 (2008) CrossRefMATHMathSciNet
37.
Metadata
Title
Optimal investment and price dependence in a semi-static market
Author
Pietro Siorpaes
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Finance and Stochastics / Issue 1/2015
Print ISSN: 0949-2984
Electronic ISSN: 1432-1122
DOI
https://doi.org/10.1007/s00780-014-0245-8

Other articles of this Issue 1/2015

Finance and Stochastics 1/2015 Go to the issue