Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2015

01-04-2015

Optimal three-dimensional optical orthogonal codes of weight three

Author: Kenneth W. Shum

Published in: Designs, Codes and Cryptography | Issue 1/2015

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using polarization technique in optical code division multiple access, we can schedule the transmission of optical pulses in spatial domain, in addition to the frequency domain and time domain. An optical orthogonal code (OOC) which spreads in these dimensions is called a three-dimensional (3-D) OOC. In this paper, we study 3-D OOC with at most one optical pulse per wavelength/time plane, which have the favorable property that the Hamming auto-correlation is identically equal to 0. An upper bound on the number of codewords for general Hamming cross-correlation requirement is given. A 3-D OCC with at most one pulse per wavelength/time plane and Hamming cross-correlation no more than 1 is shown to be equivalent to a generalized Bhaskar Rao group divisible design (GBRGDD), signed over a cyclic group. Through this equivalence, necessary and sufficient conditions for the existence of GBRGDD of weighted 3, signed over a cyclic group, are derived.
Literature
1.
go back to reference Abel R.J.R., Buratti M.: Some progress on \((v,\,4,\,1)\) difference families and optical orthogonal codes. J. Comb. Theory A 106(1), 59–75 (2004). Abel R.J.R., Buratti M.: Some progress on \((v,\,4,\,1)\) difference families and optical orthogonal codes. J. Comb. Theory A 106(1), 59–75 (2004).
2.
go back to reference Abel R.J.R., Chan N.H.N., Combe D., Palmer W.D.: Existence of GBRDs with block size 4 and BRDs with block size 5. Des. Codes Cryptogr. 61(3), 285–300 (2011). Abel R.J.R., Chan N.H.N., Combe D., Palmer W.D.: Existence of GBRDs with block size 4 and BRDs with block size 5. Des. Codes Cryptogr. 61(3), 285–300 (2011).
3.
go back to reference Beth T., Jungnickel D., Lenz H.: Design theory. In: Encyclopedia of Mathematics and Its Applications, vol. 78, 2nd edn. Cambridge University Press, Cambridge (1999). Beth T., Jungnickel D., Lenz H.: Design theory. In: Encyclopedia of Mathematics and Its Applications, vol. 78, 2nd edn. Cambridge University Press, Cambridge (1999).
4.
go back to reference Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16, 11–27 (1999). Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16, 11–27 (1999).
5.
go back to reference Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002). Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002).
6.
go back to reference Buratti M., Pasotti A.: Further progress on difference families with block size 4 or 5. Des. Codes Cryptogr. 56(1), 1–20 (2010). Buratti M., Pasotti A.: Further progress on difference families with block size 4 or 5. Des. Codes Cryptogr. 56(1), 1–20 (2010).
7.
go back to reference Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inf. Theory 49(5), 1283–1292 (2003). Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inf. Theory 49(5), 1283–1292 (2003).
8.
go back to reference Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discret. Math. 279(1–3), 135–151 (2004). Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discret. Math. 279(1–3), 135–151 (2004).
9.
go back to reference Chee Y.M., Ge G., Ling A.C.H.: Group divisible codes and their application in the construction of optimal constant-composition codes of weight three. IEEE Trans. Inf. Theory 54(8), 3552–3564 (2008). Chee Y.M., Ge G., Ling A.C.H.: Group divisible codes and their application in the construction of optimal constant-composition codes of weight three. IEEE Trans. Inf. Theory 54(8), 3552–3564 (2008).
10.
go back to reference Chen K., Zhu L.: Existence of \((q,\,6,\,1)\) difference families with \(q\) a prime power. Des. Codes Cryptogr. 15(2), 167–173 (1998). Chen K., Zhu L.: Existence of \((q,\,6,\,1)\) difference families with \(q\) a prime power. Des. Codes Cryptogr. 15(2), 167–173 (1998).
11.
go back to reference Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989). Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).
12.
go back to reference Colbourn C.J., Rosa A.: Triple Systems. Oxford Mathematics Monographs. Oxford University Press, Oxford (1999). Colbourn C.J., Rosa A.: Triple Systems. Oxford Mathematics Monographs. Oxford University Press, Oxford (1999).
13.
go back to reference Dai P., Wang J., Yin J.: Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property. Des. Codes Cryptogr. 1–16 (2012). doi: 10.1007/s10623-012-9733-z. Dai P., Wang J., Yin J.: Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property. Des. Codes Cryptogr. 1–16 (2012). doi: 10.​1007/​s10623-012-9733-z.
14.
go back to reference de Launey W.: Bhaskar Rao designs. In: CRC Handbook of Combinatorial Designs, pp. 299–301. CRC Press, Boca Raton (2007). de Launey W.: Bhaskar Rao designs. In: CRC Handbook of Combinatorial Designs, pp. 299–301. CRC Press, Boca Raton (2007).
15.
go back to reference Djordjevic I.B., Vasic B.: Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems. J. Lightwave Technol. 21(9), 1869–1875 (2003). Djordjevic I.B., Vasic B.: Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems. J. Lightwave Technol. 21(9), 1869–1875 (2003).
16.
go back to reference Etzion T.: Optimal constant weight codes over \(Z_k\) and generalized designs. Discret. Math. 169, 55–82 (1997). Etzion T.: Optimal constant weight codes over \(Z_k\) and generalized designs. Discret. Math. 169, 55–82 (1997).
17.
go back to reference Feng T., Chang Y.: Combinatorial constructions for optimal two-dimensional optical orthogonal codes with \(\lambda = 2\). IEEE Trans. Inf. Theory 57(10), 6796–6819 (2011). Feng T., Chang Y.: Combinatorial constructions for optimal two-dimensional optical orthogonal codes with \(\lambda = 2\). IEEE Trans. Inf. Theory 57(10), 6796–6819 (2011).
18.
go back to reference Fuji-Hara R., Miao Y.: Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inf. Theory 46(11), 2396–2406 (2000). Fuji-Hara R., Miao Y.: Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inf. Theory 46(11), 2396–2406 (2000).
19.
go back to reference Gallant R.P., Jiang Z., Ling A.C.H.: The spectrum of cyclic group divisible designs with block size three. J. Comb. Des. 7, 95–105 (1999). Gallant R.P., Jiang Z., Ling A.C.H.: The spectrum of cyclic group divisible designs with block size three. J. Comb. Des. 7, 95–105 (1999).
20.
go back to reference Gao F., Ge G.: Optimal ternary constant-composition codes of weight four and distance five. IEEE Trans. Inf. Theory 57(6), 3742–3757 (2011). Gao F., Ge G.: Optimal ternary constant-composition codes of weight four and distance five. IEEE Trans. Inf. Theory 57(6), 3742–3757 (2011).
21.
go back to reference Garg M.: Performance analysis and implementation of three dimensional codes in optical code division multiple access system. Master, Thapar University, Punjab (2012). Garg M.: Performance analysis and implementation of three dimensional codes in optical code division multiple access system. Master, Thapar University, Punjab (2012).
22.
go back to reference Ge G.: On \((g,\,4;\,1)\)-difference matrices. Discret. Math. 301, 164–174 (2005). Ge G.: On \((g,\,4;\,1)\)-difference matrices. Discret. Math. 301, 164–174 (2005).
23.
go back to reference Ge G.: Construction of optimal ternary constant weight codes via Bhaskar Rao designs. Discret. Math. 308(13), 2704–2708 (2008). Ge G.: Construction of optimal ternary constant weight codes via Bhaskar Rao designs. Discret. Math. 308(13), 2704–2708 (2008).
24.
go back to reference Ge G., Greig M., Seberry J.: Generalized Bhaskar Rao designs with block size 4 signed over elementary Abelian groups. J. Comb. Math. Comb. Comput. 46, 3–45 (2003). Ge G., Greig M., Seberry J.: Generalized Bhaskar Rao designs with block size 4 signed over elementary Abelian groups. J. Comb. Math. Comb. Comput. 46, 3–45 (2003).
25.
go back to reference Ge G., Greig M., Seberry J., Seberry, R.: Generalized Bhaskar Rao designs with block size 3 over finite Abelian groups. Graphs Comb. 23(3), 271–290 (2007). Ge G., Greig M., Seberry J., Seberry, R.: Generalized Bhaskar Rao designs with block size 3 over finite Abelian groups. Graphs Comb. 23(3), 271–290 (2007).
26.
go back to reference Hanani H.: Balanced incomplete block designs and related designs. Discret. Math. 11, 255–369 (1975). Hanani H.: Balanced incomplete block designs and related designs. Discret. Math. 11, 255–369 (1975).
27.
go back to reference Jiang Z.: Concerning cyclic group divisible designs with block size three. Australas. J. Comb. 13, 227–245 (1996). Jiang Z.: Concerning cyclic group divisible designs with block size three. Australas. J. Comb. 13, 227–245 (1996).
28.
go back to reference Jindal S., Gupta N.: Performance evaluation of optical CDMA based 3D code with increasing bit rate in local area network. In: IEEE Region 8 Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), Novosibirsk, Russia, pp. 386–388, 2008. Jindal S., Gupta N.: Performance evaluation of optical CDMA based 3D code with increasing bit rate in local area network. In: IEEE Region 8 Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), Novosibirsk, Russia, pp. 386–388, 2008.
29.
go back to reference Kim S., Yu K., Park N.: A new family of space/wavelength/time spread three-dimensional optical code for OCDMA network. J. Lightwave Technol. 18(4), 502–511 (2000). Kim S., Yu K., Park N.: A new family of space/wavelength/time spread three-dimensional optical code for OCDMA network. J. Lightwave Technol. 18(4), 502–511 (2000).
30.
go back to reference Li X., Fan P., Shum K.W.: Construction of space/wavelength/time spread optical code with large family size. IEEE Commun. Lett. 16(6), 893–896 (2012). Li X., Fan P., Shum K.W.: Construction of space/wavelength/time spread optical code with large family size. IEEE Commun. Lett. 16(6), 893–896 (2012).
31.
go back to reference Li X., Fan P., Suehiro N., Wu D.: New classes of optimal variable-weight optical orthogonal codes with Hamming weights 3 and 4. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E95–A(11), 1843–1850 (2012). Li X., Fan P., Suehiro N., Wu D.: New classes of optimal variable-weight optical orthogonal codes with Hamming weights 3 and 4. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E95–A(11), 1843–1850 (2012).
32.
go back to reference McGeehan J.E., Motaghian Nezam S.M.R., Saghari P., Willner A.E., Omrani R., Kumar P.V.: Experimental demonstration of OCDMA transmission using a three-dimensional (time–wavelength-polarization) codeset. J. Lightwave Technol. 23(10), 3283–3289 (2005). McGeehan J.E., Motaghian Nezam S.M.R., Saghari P., Willner A.E., Omrani R., Kumar P.V.: Experimental demonstration of OCDMA transmission using a three-dimensional (time–wavelength-polarization) codeset. J. Lightwave Technol. 23(10), 3283–3289 (2005).
33.
go back to reference Miyamoto N., Mizuno H., Shinohara S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields Appl. 10(3), 405–411 (2004). Miyamoto N., Mizuno H., Shinohara S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields Appl. 10(3), 405–411 (2004).
34.
go back to reference Omrani R., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58(2), 1163–1185 (2012). Omrani R., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58(2), 1163–1185 (2012).
35.
go back to reference Ortiz-Ubarri J., Moreno O., Tirkel A.: Three-dimensional periodic optical orthogonal code for OCDMA systems. In: IEEE Information Theory Workshop (ITW), Paraty, Brazil, pp. 170–174, 2011. Ortiz-Ubarri J., Moreno O., Tirkel A.: Three-dimensional periodic optical orthogonal code for OCDMA systems. In: IEEE Information Theory Workshop (ITW), Paraty, Brazil, pp. 170–174, 2011.
36.
go back to reference Rotman J.J.: Advanced Modern Algebra. Graduate Studies in Mathematics, 2nd edn. American Mathematic Society, Providence (2009). Rotman J.J.: Advanced Modern Algebra. Graduate Studies in Mathematics, 2nd edn. American Mathematic Society, Providence (2009).
37.
go back to reference Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56(7), 3613–3620 (2010). Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56(7), 3613–3620 (2010).
38.
go back to reference Wang J., Shan X., Yin J.: On constructions for optimal two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 54, 43–60 (2010). Wang J., Shan X., Yin J.: On constructions for optimal two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 54, 43–60 (2010).
39.
go back to reference Wang J., Yin J.: Two-dimensional optimal optical orthogonal codes and semicyclic group divisible designs. IEEE Trans. Inf. Theory 56(5), 2177–2187 (2010). Wang J., Yin J.: Two-dimensional optimal optical orthogonal codes and semicyclic group divisible designs. IEEE Trans. Inf. Theory 56(5), 2177–2187 (2010).
40.
go back to reference Wang K., Wang J.: Semicyclic 4-GDDs and related two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 63(3), 305–319 (2012). Wang K., Wang J.: Semicyclic 4-GDDs and related two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 63(3), 305–319 (2012).
41.
go back to reference Wang X., Chang Y., Feng T.: Optimal 2-D (\(n\times m\), 3, 2, 1)-optical orthogonal codes. IEEE Trans. Inf. Theory 59(1), 710–725 (2013). Wang X., Chang Y., Feng T.: Optimal 2-D (\(n\times m\), 3, 2, 1)-optical orthogonal codes. IEEE Trans. Inf. Theory 59(1), 710–725 (2013).
42.
go back to reference Wilson R.M.: An existence theory for pairwise balanced designs. J. Comb. Theory A 13, 220–245 (1972). Wilson R.M.: An existence theory for pairwise balanced designs. J. Comb. Theory A 13, 220–245 (1972).
43.
go back to reference Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998). Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998).
44.
go back to reference Zhang H., Zhang X., Ge G.: Optimal ternary constant-weight codes with weight 4 and distance 5. IEEE Trans. Inf. Theory 58(5), 2706–2718 (2012). Zhang H., Zhang X., Ge G.: Optimal ternary constant-weight codes with weight 4 and distance 5. IEEE Trans. Inf. Theory 58(5), 2706–2718 (2012).
Metadata
Title
Optimal three-dimensional optical orthogonal codes of weight three
Author
Kenneth W. Shum
Publication date
01-04-2015
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2015
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-013-9894-4

Other articles of this Issue 1/2015

Designs, Codes and Cryptography 1/2015 Go to the issue

Premium Partner