Skip to main content
Top
Published in: Calcolo 1/2018

01-03-2018

Optimal vorticity accuracy in an efficient velocity–vorticity method for the 2D Navier–Stokes equations

Authors: M. Akbas, L. G. Rebholz, C. Zerfas

Published in: Calcolo | Issue 1/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study a velocity–vorticity scheme for the 2D incompressible Navier–Stokes equations, which is based on a formulation that couples the rotation form of the momentum equation with the vorticity equation, and a temporal discretization that stably decouples the system at each time step and allows for simultaneous solving of the vorticity equation and velocity–pressure system (thus if special care is taken in its implementation, the method can have no extra cost compared to common velocity–pressure schemes). This scheme was recently shown to be unconditionally long-time \(H^1\) stable for both velocity and vorticity, which is a property not shared by any common velocity–pressure method. Herein, we analyze the scheme’s convergence, and prove that it yields unconditional optimal accuracy for both velocity and vorticity, thus making it advantageous over common velocity–pressure schemes if the vorticity variable is of interest. Numerical experiments are given that illustrate the theory and demonstrate the scheme’s usefulness on some benchmark problems.
Literature
2.
go back to reference Bochev, P.: Negative norm least-squares methods for the velocity–vorticity–pressure Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 15(2), 237–256 (1999)MathSciNetCrossRefMATH Bochev, P.: Negative norm least-squares methods for the velocity–vorticity–pressure Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 15(2), 237–256 (1999)MathSciNetCrossRefMATH
3.
go back to reference Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)CrossRefMATH Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)CrossRefMATH
4.
go back to reference Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multpliers. R.A.I.R.O 8, 129–151 (1974)MATH Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multpliers. R.A.I.R.O 8, 129–151 (1974)MATH
5.
go back to reference Charnyi, S., Heister, T., Olshanskii, M., Rebholz, L.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)MathSciNetCrossRef Charnyi, S., Heister, T., Olshanskii, M., Rebholz, L.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)MathSciNetCrossRef
6.
go back to reference Ervin, V.J., Heuer, N.: Approximation of time-dependent, viscoelastic fluid flow: Crank–Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ. 20, 248–283 (2003)MathSciNetCrossRefMATH Ervin, V.J., Heuer, N.: Approximation of time-dependent, viscoelastic fluid flow: Crank–Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ. 20, 248–283 (2003)MathSciNetCrossRefMATH
7.
go back to reference Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH
8.
go back to reference Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method, vol. 2. Wiley, New York (1998)MATH Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method, vol. 2. Wiley, New York (1998)MATH
9.
go back to reference Gresho, P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: theory. Int. J. Numer. Methods Fluids 11(5), 587–620 (1990)MathSciNetCrossRefMATH Gresho, P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: theory. Int. J. Numer. Methods Fluids 11(5), 587–620 (1990)MathSciNetCrossRefMATH
10.
go back to reference Heath, M.: Scientific Computing: An Introductory Survey. McGraw-Hill, New York (2002)MATH Heath, M.: Scientific Computing: An Introductory Survey. McGraw-Hill, New York (2002)MATH
11.
go back to reference Heister, T., Olshanskii, M. A., Rebholz, L. G.: Unconditional long-time stability of a velocity–vorticity method for 2D Navier–Stokes equations. Numerische Mathematik 135(1), 143–167 (2016) Heister, T., Olshanskii, M. A., Rebholz, L. G.: Unconditional long-time stability of a velocity–vorticity method for 2D Navier–Stokes equations. Numerische Mathematik 135(1), 143–167 (2016)
12.
go back to reference Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)CrossRefMATH Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)CrossRefMATH
13.
go back to reference John, V.: Large Eddy Simulation of Turbulent Incompressible Flows: Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2004)CrossRef John, V.: Large Eddy Simulation of Turbulent Incompressible Flows: Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2004)CrossRef
14.
go back to reference Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York (1969)MATH Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York (1969)MATH
15.
go back to reference Layton, W.: Introduction to Finite Element Methods for Incompressible, Viscous Flow. SIAM, Philadelphia (2008) Layton, W.: Introduction to Finite Element Methods for Incompressible, Viscous Flow. SIAM, Philadelphia (2008)
16.
go back to reference Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)MathSciNetCrossRefMATH
17.
go back to reference Lee, H.K., Olshanskii, M.A., Rebholz, L.G.: On error analysis for the 3D Navier–Stokes equations in velocity–vorticity–helicity form. SIAM J. Numer. Anal. 49(2), 711–732 (2011)MathSciNetCrossRefMATH Lee, H.K., Olshanskii, M.A., Rebholz, L.G.: On error analysis for the 3D Navier–Stokes equations in velocity–vorticity–helicity form. SIAM J. Numer. Anal. 49(2), 711–732 (2011)MathSciNetCrossRefMATH
18.
go back to reference Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)MathSciNetCrossRefMATH Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)MathSciNetCrossRefMATH
19.
go back to reference Najjar, F., Vanka, S.: Simulations of the unsteady separated flow past a normal flat plate. Int. J. Numer. Methods Fluids 21, 525–547 (1995)CrossRefMATH Najjar, F., Vanka, S.: Simulations of the unsteady separated flow past a normal flat plate. Int. J. Numer. Methods Fluids 21, 525–547 (1995)CrossRefMATH
20.
go back to reference Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229, 4291–4303 (2010)MathSciNetCrossRefMATH Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229, 4291–4303 (2010)MathSciNetCrossRefMATH
21.
go back to reference Olshanskii, M.A., Heister, T., Rebholz, L., Galvin, K.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)MathSciNetCrossRef Olshanskii, M.A., Heister, T., Rebholz, L., Galvin, K.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)MathSciNetCrossRef
22.
go back to reference Saha, A.: Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19(128110), 1–4 (2007)MATH Saha, A.: Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19(128110), 1–4 (2007)MATH
23.
go back to reference Saha, A.: Direct numerical simulation of two-dimensional flow past a normal flat plate. J. Eng. Mech. 139(12), 1894–1901 (2013)CrossRef Saha, A.: Direct numerical simulation of two-dimensional flow past a normal flat plate. J. Eng. Mech. 139(12), 1894–1901 (2013)CrossRef
25.
go back to reference Tezduyar, T., Mittal, S., Ray, S., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)CrossRefMATH Tezduyar, T., Mittal, S., Ray, S., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)CrossRefMATH
26.
go back to reference Tone, F.: On the long-time stability of the Crank–Nicholson scheme for the 2D Navier–Stokes equations. Numer. Methods D. E. 23(5), 1235–1248 (2007)CrossRefMATH Tone, F.: On the long-time stability of the Crank–Nicholson scheme for the 2D Navier–Stokes equations. Numer. Methods D. E. 23(5), 1235–1248 (2007)CrossRefMATH
27.
go back to reference Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)MathSciNetCrossRefMATH Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)MathSciNetCrossRefMATH
28.
go back to reference Wong, K.L., Baker, A.J.: A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm. Int. J. Numer. Methods Fluids 38, 99–123 (2002)CrossRefMATH Wong, K.L., Baker, A.J.: A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm. Int. J. Numer. Methods Fluids 38, 99–123 (2002)CrossRefMATH
Metadata
Title
Optimal vorticity accuracy in an efficient velocity–vorticity method for the 2D Navier–Stokes equations
Authors
M. Akbas
L. G. Rebholz
C. Zerfas
Publication date
01-03-2018
Publisher
Springer Milan
Published in
Calcolo / Issue 1/2018
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0246-7

Other articles of this Issue 1/2018

Calcolo 1/2018 Go to the issue

Premium Partner