Skip to main content
Top

2023 | OriginalPaper | Chapter

7. Optimisation of Energy and Exergy Analysis of 100 W Solar Photovoltaic Module Using ANN Method

Authors : I. R. Ganesh Kumar, S. Vijay Kumar, Jagannath Reddy, G. Rajendra, Yoga Sainath Reddy, Sai Ranjith Reddy, Biplab Das

Published in: Advances in Smart Energy Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Renewable technologies are plentiful, long lasting, and eco-friendly. Solar energy, which generates both heat and light, is the most abundant source of energy. Solar photovoltaic modules use solar radiations to generate electricity and thermal energy, while the remaining solar radiation content is lost to the environment. The first law of thermodynamics was used to perform an energy analysis on a solar photovoltaic module, and the second law of thermodynamics was used to perform an exergy analysis to determine energy losses and exergy efficiency during the photovoltaic conversion process. The operating parameters of a solar photovoltaic module are as follows: ambient temperature, photovoltaic module surface temperature, overall heat transfer coefficient, short circuit current, open circuit voltage, fill factor and solar radiation. These were achieved on a sunny day in the month of February at R.L.J.I.T, Doddaballapur. The experimental data are utilised to calculate the solar photovoltaic module’s energy and exergy efficiencies. The efficiency of the solar panel performance decreases as the temperature of the module rises. As a result, by reducing heat from the surface of the solar photovoltaic module, the module’s efficiency can be increased. Surface heat can be eliminated by delivering water or air as a medium to the solar photovoltaic module. Finally, ANN model was developed to determine the performance prediction models using multilayer perceptron neural network, and it reveals that the developed model with six neurons gives better performance with a confidence interval of 95%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wyman, C.J.C., Keith, F.: A review of collector and energy storage technology for intermediate temperature applications. Solar Energy 24, 517–540 (1980)CrossRef Wyman, C.J.C., Keith, F.: A review of collector and energy storage technology for intermediate temperature applications. Solar Energy 24, 517–540 (1980)CrossRef
2.
go back to reference Bejan, A.: Advanced engineering thermodynamics. Wiley interscience publisher, New York (1988) Bejan, A.: Advanced engineering thermodynamics. Wiley interscience publisher, New York (1988)
3.
go back to reference Rosen, M.A., Hooper, F.C., Barbaris, L.N.: Energy analysis for the evaluation of the performance of closed thermal energy storage systems. Trans. ASME J. Sol. Energy Eng. 110, 255–261 (1988)CrossRef Rosen, M.A., Hooper, F.C., Barbaris, L.N.: Energy analysis for the evaluation of the performance of closed thermal energy storage systems. Trans. ASME J. Sol. Energy Eng. 110, 255–261 (1988)CrossRef
4.
go back to reference Rosen, M.A., Dincer, L.: Thermal storage and exergy analysis: the impact of stratification. Trans. CSME 23(1B), 173–186 (1999) Rosen, M.A., Dincer, L.: Thermal storage and exergy analysis: the impact of stratification. Trans. CSME 23(1B), 173–186 (1999)
5.
go back to reference Cengel, Y.A.: Thermodynamics: An Engineering Approach, 5th edn. Tata McGraw hill, New York (2006) Cengel, Y.A.: Thermodynamics: An Engineering Approach, 5th edn. Tata McGraw hill, New York (2006)
6.
go back to reference Sarhaddi, F., Farahat, S., Ajam, H., Behzadmeh, A.: Exergetic optimization of a solar photovoltaic array. Hindawi Publishing Corporation Journal of Thermodynamics (2009) Sarhaddi, F., Farahat, S., Ajam, H., Behzadmeh, A.: Exergetic optimization of a solar photovoltaic array. Hindawi Publishing Corporation Journal of Thermodynamics (2009)
7.
go back to reference Larson, D.L., Cortez, L.A.B.: Energy analysis: essential to effective energy management. Trans. ASAE 38(4), 1173–1178 (1995)CrossRef Larson, D.L., Cortez, L.A.B.: Energy analysis: essential to effective energy management. Trans. ASAE 38(4), 1173–1178 (1995)CrossRef
8.
go back to reference Joshi, A.S., Dincer, I., Reddy, B.V.: Development of solar energy maps. Int. J. Energy Res. 33, 709–718 (2009)CrossRef Joshi, A.S., Dincer, I., Reddy, B.V.: Development of solar energy maps. Int. J. Energy Res. 33, 709–718 (2009)CrossRef
9.
go back to reference Rawat, P.: Energy performance analysis of 300W solar photovoltaic module. Int. J. Eng. Sci. Res. Technol. 381–390 (2017) Rawat, P.: Energy performance analysis of 300W solar photovoltaic module. Int. J. Eng. Sci. Res. Technol. 381–390 (2017)
10.
go back to reference Sudhakar, K., Rajesh, M., Premalatha, M.: A Mathematical model to assess the potential of algal bio-fuels in India energy sources. Part A: Recovery, Utilisation Environ. Effects 34(12), 1114–1120 (2012) Sudhakar, K., Rajesh, M., Premalatha, M.: A Mathematical model to assess the potential of algal bio-fuels in India energy sources. Part A: Recovery, Utilisation Environ. Effects 34(12), 1114–1120 (2012)
11.
go back to reference Rawat, P., Kumar, P.: Performance evaluation of solar photovoltaic/thermal (PV/T) system. Int. J. Sci. Res. 4, 1466–1471 (2015) Rawat, P., Kumar, P.: Performance evaluation of solar photovoltaic/thermal (PV/T) system. Int. J. Sci. Res. 4, 1466–1471 (2015)
12.
go back to reference Yoga Sainath Reddy, S., Reddy, J., Rajendra, G., Sai Ranjith Reddy, K., Ganesh Kumar, I.R.: Performance of 20w solar photovoltaic module for energy and exergy analysis. Int. J. Modern Trends Sci. Technol. 7(05), 102–106 (2021) Yoga Sainath Reddy, S., Reddy, J., Rajendra, G., Sai Ranjith Reddy, K., Ganesh Kumar, I.R.: Performance of 20w solar photovoltaic module for energy and exergy analysis. Int. J. Modern Trends Sci. Technol. 7(05), 102–106 (2021)
13.
go back to reference Geng, L., Cengel, Y.A., Turner, R.H.: Energy analysis of a solar heating system. J. Solar Energy Eng. 1173(3), 249–251 (1995) Geng, L., Cengel, Y.A., Turner, R.H.: Energy analysis of a solar heating system. J. Solar Energy Eng. 1173(3), 249–251 (1995)
14.
go back to reference Pandey, A.K., Pant, P.C., Sastry, O.S., Kumar, A., Kumar, S.: energy and exergy performance evaluation of a typical solar photovoltaic module. Thermal Sci. 19, S625–S636 (2015)CrossRef Pandey, A.K., Pant, P.C., Sastry, O.S., Kumar, A., Kumar, S.: energy and exergy performance evaluation of a typical solar photovoltaic module. Thermal Sci. 19, S625–S636 (2015)CrossRef
15.
go back to reference Singh, A., Shukla, O.P., Nishant Saxsena, M.: Energy and exergy analysis of crystallin silicon of solar photovoltaic module. Int. Res. J. Eng. Technol. 1808–1826 (2016) Singh, A., Shukla, O.P., Nishant Saxsena, M.: Energy and exergy analysis of crystallin silicon of solar photovoltaic module. Int. Res. J. Eng. Technol. 1808–1826 (2016)
16.
go back to reference Wong, K.F.V.: Thermodynamics for Engineers. University of Miami, CRC Press LLC (2000) Wong, K.F.V.: Thermodynamics for Engineers. University of Miami, CRC Press LLC (2000)
17.
go back to reference Hepabsli, A.: A key review on exergetic analysis and assessment of renewable energy resources for sustainable future. Renew. Sustain. Energy Rev. 12, 593–661 (2008)CrossRef Hepabsli, A.: A key review on exergetic analysis and assessment of renewable energy resources for sustainable future. Renew. Sustain. Energy Rev. 12, 593–661 (2008)CrossRef
18.
go back to reference Kotas, T.J.: The exergy method of thermal plant analysis. Krieger Publish Company, Malabar, FL (1995) Kotas, T.J.: The exergy method of thermal plant analysis. Krieger Publish Company, Malabar, FL (1995)
19.
go back to reference Petela, R.: Exergy of undiluted thermal radiation. Sol. Energy 74, 469–488 (2003)CrossRef Petela, R.: Exergy of undiluted thermal radiation. Sol. Energy 74, 469–488 (2003)CrossRef
20.
go back to reference Boyle, G.: Renewable Energy Power for a Sustainable Future, 2nd edn. Oxford University Press, Oxford (2004) Boyle, G.: Renewable Energy Power for a Sustainable Future, 2nd edn. Oxford University Press, Oxford (2004)
21.
go back to reference Watmuff, J.H., Charters, W.W.S., Proctor, D.: Solar and wind induced external coefficients for solar collectors. COM PLES 2nd Q. 56(2), 56 (1977) Watmuff, J.H., Charters, W.W.S., Proctor, D.: Solar and wind induced external coefficients for solar collectors. COM PLES 2nd Q. 56(2), 56 (1977)
Metadata
Title
Optimisation of Energy and Exergy Analysis of 100 W Solar Photovoltaic Module Using ANN Method
Authors
I. R. Ganesh Kumar
S. Vijay Kumar
Jagannath Reddy
G. Rajendra
Yoga Sainath Reddy
Sai Ranjith Reddy
Biplab Das
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2412-5_7