Skip to main content
Top

2018 | OriginalPaper | Chapter

Optimization of Geometry of Cavitational Tunnel Using CFD Method

Authors : Robert Jasionowski, Waldemar Kostrzewa

Published in: Dynamical Systems in Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The liquid flow through a various kind of installation or devices is still not fully clarified issue. The liquid flow is assisted by a stream swirling, local pressure drops or changes of flow rates or temperature. CFD methods have been already implemented for few years to analyze phenomena related to the liquid flow. In this work Autodesk CFD Design Study Environment 2018 was used to simulate a new geometry of cavitational tunnel—a laboratory stand for examinations of cavitational resistance of structural materials. Three different geometries of the tunnel were analyzed in this work: with a cavitation initiator made of barricade and counter-barricade systems, with a cavitation initiator having a cylindrical pocket in counter-barricade and with a cavitation initiator having a double wedge shape. The introduced change of geometry allows multiplying the area of local pressure drop (i.e. the area of cavitation phenomenon). Obtained results of will serve in future (after building the new laboratory stand) to verify CFD simulations in a real testing conditions. The new tunnel geometry developed in CFD simulations should shorten evaluation time, what in turn, will give direct economic benefits (i.e. lower exploitation rate of the laboratory stand as well as lower costs of electrical energy).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Oxford (2001)MATH Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Oxford (2001)MATH
2.
go back to reference Chung, J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)CrossRef Chung, J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)CrossRef
3.
go back to reference Cebeci, T., Shao, J.R., Kafyeke, F., Laurendeau, E.: Computational Fluid Dynamics for Engineers. Springer, Berlin (2005) Cebeci, T., Shao, J.R., Kafyeke, F., Laurendeau, E.: Computational Fluid Dynamics for Engineers. Springer, Berlin (2005)
4.
go back to reference Sayma, A.: Computational Fluid Dynamics, Ventus (2009) Sayma, A.: Computational Fluid Dynamics, Ventus (2009)
5.
go back to reference Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of Computational Fluid Dynamics. Springer, Berlin (2001)CrossRef Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of Computational Fluid Dynamics. Springer, Berlin (2001)CrossRef
6.
go back to reference Anderson Jr., J.D.: Computational Fluid Dynamics. The Basics with Applications. McGraw-Hill, New York (1995) Anderson Jr., J.D.: Computational Fluid Dynamics. The Basics with Applications. McGraw-Hill, New York (1995)
7.
go back to reference Carmichael, R., Erickson, L.L.: PAN AIR—a higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations. In: 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, USA (1981) Carmichael, R., Erickson, L.L.: PAN AIR—a higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations. In: 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, USA (1981)
8.
go back to reference Youngren, H.H., Bouchard, E.E., Coopersmith, R.M., Miranda, L.R.: Comparison of panel method formulations and its influence on the development of QUADPAN, an advanced low order method. In: Applied Aerodynamics Conference Danvers, MA, USA (1983) Youngren, H.H., Bouchard, E.E., Coopersmith, R.M., Miranda, L.R.: Comparison of panel method formulations and its influence on the development of QUADPAN, an advanced low order method. In: Applied Aerodynamics Conference Danvers, MA, USA (1983)
9.
go back to reference Hess, J.L., Friedman, D.M.: Analysis of complex inlet configurations using a higher-order panel method. In: Applied Aerodynamics Conference Danvers, MA, USA (1983) Hess, J.L., Friedman, D.M.: Analysis of complex inlet configurations using a higher-order panel method. In: Applied Aerodynamics Conference Danvers, MA, USA (1983)
10.
go back to reference Bristow, D.R.: Development of panel methods for subsonic analysis and design, NASA (1980) Bristow, D.R.: Development of panel methods for subsonic analysis and design, NASA (1980)
11.
go back to reference Ashby, D.L., Dudley, M.R. Iguchi, S.K. Browne, L., Katz, J.: Potential Flow Theory and Operation Guide for the Panel Code PMARC, NASA (1991) Ashby, D.L., Dudley, M.R. Iguchi, S.K. Browne, L., Katz, J.: Potential Flow Theory and Operation Guide for the Panel Code PMARC, NASA (1991)
12.
go back to reference Griggs, J.L.: Apparatus for heating fluids, US 5385298 A, US 08/015.809 (1995) Griggs, J.L.: Apparatus for heating fluids, US 5385298 A, US 08/015.809 (1995)
Metadata
Title
Optimization of Geometry of Cavitational Tunnel Using CFD Method
Authors
Robert Jasionowski
Waldemar Kostrzewa
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96601-4_17

Premium Partners