Skip to main content
Top
Published in: International Journal of Material Forming 3/2023

01-05-2023 | Original Research

Optimization of reduction schedule in a tandem cold rolling mill considering the material properties of the strip

Authors: Masoud Asadi, Mehrdad Poursina, Shahram Pourfarid, Farhad Haji Aboutalebi

Published in: International Journal of Material Forming | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The material properties of the strip play a vital role in the power consumption and the damage evolution in a tandem cold rolling mill. Therefore, the strip tearing or power consumption level of importance is not the same for different materials. Besides, various reduction schedules can be proposed for the specified total reduction and initial strip thickness in the tandem cold rolling process. An important goal that the reduction patterns should be met is to minimize power consumption and damage evolution simultaneously. Firstly, the level of importance of saving energy and strip tearing should be calculated for each material to find a reduction schedule. For this purpose, the Bao-Wierzbicki (BW) ductile damage criterion is selected and calibrated by the hybrid experimental–numerical method for five widely used carbon steel alloys. Then, the fracture loci of selected materials are constructed and implemented into an explicit finite element code. A five-stand tandem rolling mill is simulated numerically in which the flattening phenomenon of the rollers is considered. By comparing the simulation results, an indicator is introduced for the comparison of steel grades in terms of the rolling power consumption and damage evolution in a specified rolling program. Afterward, the Pareto optimality is undertaken to optimize the power-damage objective function. This paper presents a new method for determining the importance of damage evolution and power consumption based on material properties. This method significantly reduces energy consumption and the probability of strip tearing simultaneously in a tandem cold rolling mill.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang Y, Wang J, Yin C, Zhao Q (2020) Multi-objective optimization of rolling schedule for five-stand tandem cold mill. IEEE Access 8:80417–80426CrossRef Wang Y, Wang J, Yin C, Zhao Q (2020) Multi-objective optimization of rolling schedule for five-stand tandem cold mill. IEEE Access 8:80417–80426CrossRef
2.
go back to reference Reddy NV, Suryanarayana G (2001) A setup model for tandem cold rolling mills. J Mater Process Technol 116(2–3):269–277CrossRef Reddy NV, Suryanarayana G (2001) A setup model for tandem cold rolling mills. J Mater Process Technol 116(2–3):269–277CrossRef
3.
go back to reference Dixit U, Dixit P (2000) Application of fuzzy set theory in the scheduling of a tandem cold-rolling mill. J Manuf Sci Eng 122(3):494–500CrossRef Dixit U, Dixit P (2000) Application of fuzzy set theory in the scheduling of a tandem cold-rolling mill. J Manuf Sci Eng 122(3):494–500CrossRef
4.
go back to reference Wang D, Tieu AK, De Boer F, Ma B, Yuen WD (2000) Toward a heuristic optimum design of rolling schedules for tandem cold rolling mills. Eng Appl Artif Intell 13(4):397–406CrossRef Wang D, Tieu AK, De Boer F, Ma B, Yuen WD (2000) Toward a heuristic optimum design of rolling schedules for tandem cold rolling mills. Eng Appl Artif Intell 13(4):397–406CrossRef
5.
go back to reference Pires C, Ferreira H, Sales R, Silva M (2006) Set-up optimization for tandem cold mills: A case study. J Mater Process Technol 173(3):368–375CrossRef Pires C, Ferreira H, Sales R, Silva M (2006) Set-up optimization for tandem cold mills: A case study. J Mater Process Technol 173(3):368–375CrossRef
6.
go back to reference Okado M, Suzuki H (1969) Optimising theory of pass reduction schedules and some criterion functions. J Jpn Soc Technol Plast 10(106):808–816 Okado M, Suzuki H (1969) Optimising theory of pass reduction schedules and some criterion functions. J Jpn Soc Technol Plast 10(106):808–816
7.
go back to reference Murakami A, Nakayama M, Okamoto M, Sano K, Tsuchihashi T, Abiko Y (2005) Pass schedule optimization for a tandem cold mill. IFAC Proc Vol 38(1):193–198CrossRef Murakami A, Nakayama M, Okamoto M, Sano K, Tsuchihashi T, Abiko Y (2005) Pass schedule optimization for a tandem cold mill. IFAC Proc Vol 38(1):193–198CrossRef
8.
go back to reference de Ávila Pires CT, Ferreira HC, Sales RM (2009) Adaptation for tandem cold mill models. J Mater Process Technol 209(7):3592–3596CrossRef de Ávila Pires CT, Ferreira HC, Sales RM (2009) Adaptation for tandem cold mill models. J Mater Process Technol 209(7):3592–3596CrossRef
9.
go back to reference Bemporad A, Bernardini D, Cuzzola FA, Spinelli A (2010) Optimization-based automatic flatness control in cold tandem rolling. J Process Control 20(4):396–407CrossRef Bemporad A, Bernardini D, Cuzzola FA, Spinelli A (2010) Optimization-based automatic flatness control in cold tandem rolling. J Process Control 20(4):396–407CrossRef
10.
go back to reference Yang J-M, Zhang Q, Che H-J, Han X-Y (2010) Multi-objective optimization for tandem cold rolling schedule. J Iron Steel Res Int 17(11):34–39CrossRef Yang J-M, Zhang Q, Che H-J, Han X-Y (2010) Multi-objective optimization for tandem cold rolling schedule. J Iron Steel Res Int 17(11):34–39CrossRef
11.
12.
go back to reference Chen J (2015) Load distribution algorithm of process control system in tandem cold rolling. Mater Res Innov 19(sup4):S220–S224CrossRef Chen J (2015) Load distribution algorithm of process control system in tandem cold rolling. Mater Res Innov 19(sup4):S220–S224CrossRef
14.
go back to reference Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminum extrusions. Int J Crashworthiness 9(5):449–464CrossRef Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminum extrusions. Int J Crashworthiness 9(5):449–464CrossRef
15.
go back to reference Haji Aboutalebi F, Poursina M, Nejatbakhsh H, Khataei M (2018) Numerical simulations and experimental validations of a proposed ductile damage model for DIN1623 St12 steel. Eng Fract Mech 192:276–289CrossRef Haji Aboutalebi F, Poursina M, Nejatbakhsh H, Khataei M (2018) Numerical simulations and experimental validations of a proposed ductile damage model for DIN1623 St12 steel. Eng Fract Mech 192:276–289CrossRef
16.
go back to reference Asadi M, Aboutalebi FH, Poursina M (2021) A comparative study of six fracture loci for DIN1623 St12 steel to predict strip tearing in a tandem cold rolling mill. Arch Appl Mech 91(4):1859–1878CrossRef Asadi M, Aboutalebi FH, Poursina M (2021) A comparative study of six fracture loci for DIN1623 St12 steel to predict strip tearing in a tandem cold rolling mill. Arch Appl Mech 91(4):1859–1878CrossRef
17.
go back to reference Brünig M, Gerke S, Schmidt M (2018) Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. Int J Plast 102:70–82CrossRef Brünig M, Gerke S, Schmidt M (2018) Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. Int J Plast 102:70–82CrossRef
18.
go back to reference Nick M, Liebsch C, Müller M, Weiser I, Hirt G, Bergs T (2021) Influence of pass reduction in cold rolling on damage evolution in deep drawing of rotationally symmetric cups. IOP Conf Ser Mater Sci Eng 1157(1):012050CrossRef Nick M, Liebsch C, Müller M, Weiser I, Hirt G, Bergs T (2021) Influence of pass reduction in cold rolling on damage evolution in deep drawing of rotationally symmetric cups. IOP Conf Ser Mater Sci Eng 1157(1):012050CrossRef
19.
go back to reference Ghosh S, Li M, Gardiner D (2004) A computational and experimental study of cold rolling of aluminum alloys with edge cracking. J Manuf Sci Eng 126(1):74–82CrossRef Ghosh S, Li M, Gardiner D (2004) A computational and experimental study of cold rolling of aluminum alloys with edge cracking. J Manuf Sci Eng 126(1):74–82CrossRef
20.
go back to reference Rajak SA, Reddy NV (2005) Prediction of internal defects in plane strain rolling. J Mater Process Technol 159(3):409–417CrossRef Rajak SA, Reddy NV (2005) Prediction of internal defects in plane strain rolling. J Mater Process Technol 159(3):409–417CrossRef
21.
go back to reference Mashayekhi M, Torabian N, Poursina M (2011) Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process. Simul Model Pract Theory 19(2):612–625CrossRef Mashayekhi M, Torabian N, Poursina M (2011) Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process. Simul Model Pract Theory 19(2):612–625CrossRef
22.
go back to reference Poursina M, Dehkordi NT, Fattahi A, Mirmohammadi H (2012) Application of genetic algorithms to optimization of rolling schedules based on damage mechanics. Simul Model Pract Theory 22:61–73CrossRef Poursina M, Dehkordi NT, Fattahi A, Mirmohammadi H (2012) Application of genetic algorithms to optimization of rolling schedules based on damage mechanics. Simul Model Pract Theory 22:61–73CrossRef
23.
go back to reference Li W-G, Liu X-H, Guo Z-H (2012) Multi-objective optimization for draft scheduling of hot strip mill. J Cent South Univ 19(11):3069–3078CrossRef Li W-G, Liu X-H, Guo Z-H (2012) Multi-objective optimization for draft scheduling of hot strip mill. J Cent South Univ 19(11):3069–3078CrossRef
24.
go back to reference Hu Z-Y, Yang J-M, Zhao Z-W, Sun H, Che H-J (2016) Multi-objective optimization of rolling schedules on aluminum hot tandem rolling. Int J Adv Manuf Technol 85(1):85–97CrossRef Hu Z-Y, Yang J-M, Zhao Z-W, Sun H, Che H-J (2016) Multi-objective optimization of rolling schedules on aluminum hot tandem rolling. Int J Adv Manuf Technol 85(1):85–97CrossRef
25.
go back to reference Che H, Han X, Yang J, Li L (2010) Optimization of schedule with multi-objective for tandem cold rolling mill based on IAGA. In 2010 International Conference on Mechanic Automation and Control Engineering, pp 3503–3506: IEEE Che H, Han X, Yang J, Li L (2010) Optimization of schedule with multi-objective for tandem cold rolling mill based on IAGA. In 2010 International Conference on Mechanic Automation and Control Engineering, pp 3503–3506: IEEE
26.
go back to reference Jin X, Li C-S, Wang Y, Li X-G, Gu T, Xiang Y-G (2020) Multi-objective optimization of intermediate roll profile for a 6-High cold rolling mill. Metals 10(2):287CrossRef Jin X, Li C-S, Wang Y, Li X-G, Gu T, Xiang Y-G (2020) Multi-objective optimization of intermediate roll profile for a 6-High cold rolling mill. Metals 10(2):287CrossRef
27.
go back to reference Wang Y, Li C, Jin X, Xiang Y, Li X (2020) Multi-objective optimization of rolling schedule for tandem cold strip rolling based on NSGA-II. J Manuf Process 60:257–267CrossRef Wang Y, Li C, Jin X, Xiang Y, Li X (2020) Multi-objective optimization of rolling schedule for tandem cold strip rolling based on NSGA-II. J Manuf Process 60:257–267CrossRef
28.
go back to reference Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98CrossRef Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98CrossRef
29.
go back to reference Sing W, Rao K (1997) Role of strain-hardening laws in the prediction of forming limit curves. J Mater Process Technol 63(1–3):105–110CrossRef Sing W, Rao K (1997) Role of strain-hardening laws in the prediction of forming limit curves. J Mater Process Technol 63(1–3):105–110CrossRef
30.
go back to reference ISO68921–1 (2016) Standard Metallic materials – Tensile testing, Part 1: Method of test at room temperature, Switzerland ISO68921–1 (2016) Standard Metallic materials – Tensile testing, Part 1: Method of test at room temperature, Switzerland
31.
go back to reference DIN 50125 (2016) DIN 50125: 2016‐12: Testing of metallic materials‐Tensile test pieces‏ DIN 50125 (2016) DIN 50125: 2016‐12: Testing of metallic materials‐Tensile test pieces‏
32.
go back to reference EN 10130 Standard (2006) Cold rolled low carbon steel flat products for cold forming- Technical delivery condition, Berlin, Germany EN 10130 Standard (2006) Cold rolled low carbon steel flat products for cold forming- Technical delivery condition, Berlin, Germany
33.
go back to reference Norma DIN (2004) EN 10327: Continuously hot-dip coated strip and sheet of low carbon steels for cold forming: Technical delivery conditions. German Institute for Standardization, Setembro de‏ Norma DIN (2004) EN 10327: Continuously hot-dip coated strip and sheet of low carbon steels for cold forming: Technical delivery conditions. German Institute for Standardization, Setembro de‏
34.
go back to reference EN 10268 Standard (2006) Cold rolled steel flat products with high yield strength for cold forming-Technical delivery conditions, Berlin, Germany EN 10268 Standard (2006) Cold rolled steel flat products with high yield strength for cold forming-Technical delivery conditions, Berlin, Germany
35.
go back to reference Hosford WF, Caddell RM (2011) Metal forming: mechanics and metallurgy. Cambridge University Press, New York, USACrossRef Hosford WF, Caddell RM (2011) Metal forming: mechanics and metallurgy. Cambridge University Press, New York, USACrossRef
36.
go back to reference ASTM E (2016) 646-16. Standard test method for tensile strain hardening exponents (n-values) of metallic sheet materials. ASTM International, 100, 19428-2959‏ ASTM E (2016) 646-16. Standard test method for tensile strain hardening exponents (n-values) of metallic sheet materials. ASTM International, 100, 19428-2959‏
37.
go back to reference Roberts WL (1984) Cold rolling of steel. Routledge, 2017.and flow localization. Am Soc Metals 1984:299 Roberts WL (1984) Cold rolling of steel. Routledge, 2017.and flow localization. Am Soc Metals 1984:299
38.
go back to reference Poursina M, Rahmatipour M, Mirmohamadi H (2015) A new method for prediction of forward slip in the tandem cold rolling mill. Int J Adv Manuf Technol 78(9–12):1827–1835CrossRef Poursina M, Rahmatipour M, Mirmohamadi H (2015) A new method for prediction of forward slip in the tandem cold rolling mill. Int J Adv Manuf Technol 78(9–12):1827–1835CrossRef
39.
go back to reference Hitchcock J (1935) Elastic deformation of rolls during cold rolling. ASME Rep Spec Res Comm Roll Neck Bearings 33:33–41 Hitchcock J (1935) Elastic deformation of rolls during cold rolling. ASME Rep Spec Res Comm Roll Neck Bearings 33:33–41
40.
go back to reference Manual AU (2020) Abaqus user manual. Providence, USA Manual AU (2020) Abaqus user manual. Providence, USA
41.
go back to reference Semiatin SL, Jonas JJ (1984) Formability and workability of metals: plastic instability and flow localization. Am Soc Metals 1984:299 Semiatin SL, Jonas JJ (1984) Formability and workability of metals: plastic instability and flow localization. Am Soc Metals 1984:299
42.
go back to reference Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395MathSciNetCrossRefMATH Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395MathSciNetCrossRefMATH
43.
go back to reference Poulos P, Rigatos G, Tzafestas S, Koukos A (2001) A Pareto-optimal genetic algorithm for warehouse multi-objective optimization. Eng Appl Artif Intell 14(6):737–749CrossRef Poulos P, Rigatos G, Tzafestas S, Koukos A (2001) A Pareto-optimal genetic algorithm for warehouse multi-objective optimization. Eng Appl Artif Intell 14(6):737–749CrossRef
Metadata
Title
Optimization of reduction schedule in a tandem cold rolling mill considering the material properties of the strip
Authors
Masoud Asadi
Mehrdad Poursina
Shahram Pourfarid
Farhad Haji Aboutalebi
Publication date
01-05-2023
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 3/2023
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-023-01751-6

Other articles of this Issue 3/2023

International Journal of Material Forming 3/2023 Go to the issue

Premium Partners