Skip to main content
Top
Published in: Evolutionary Intelligence 1-2/2018

07-09-2018 | Special Issue

Optimization using lion algorithm: a biological inspiration from lion’s social behavior

Author: Rajakumar Boothalingam

Published in: Evolutionary Intelligence | Issue 1-2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nature-inspired optimization algorithms, especially evolutionary computation-based and swarm intelligence-based algorithms are being used to solve a variety of optimization problems. Motivated by the obligation of having optimization algorithms, a novel optimization algorithm based on a lion’s unique social behavior had been presented in our previous work. Territorial defense and territorial takeover were the two most popular lion’s social behaviors. This paper takes the algorithm forward on rigorous and diverse performance tests to demonstrate the versatility of the algorithm. Four different test suites are presented in this paper. The first two test suites are benchmark optimization problems. The first suite had comparison with published results of evolutionary and few renowned optimization algorithms, while the second suite leads to a comparative study with state-of-the-art optimization algorithms. The test suite 3 takes the large-scale optimization problems, whereas test suite 4 considers benchmark engineering problems. The performance statistics demonstrate that the lion algorithm is equivalent to certain optimization algorithms, while outperforming majority of the optimization algorithms. The results also demonstrate the trade-off maintainability of the lion algorithm over the traditional algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rozenberg G, Bck T, Kok JN (2011) Handbook of natural computing, 1st edn. Springer Publishing Company, New York Rozenberg G, Bck T, Kok JN (2011) Handbook of natural computing, 1st edn. Springer Publishing Company, New York
2.
go back to reference Yang XS, Deb S, Fong S, He X, Zhao YX (2016) From swarm intelligence to metaheuristics: nature-inspired optimization algorithms. Computer 49(9):52–59CrossRef Yang XS, Deb S, Fong S, He X, Zhao YX (2016) From swarm intelligence to metaheuristics: nature-inspired optimization algorithms. Computer 49(9):52–59CrossRef
3.
go back to reference Shadbolt N (2004) Nature-inspired computing. IEEE J Intell Syst 19(1):2–3CrossRef Shadbolt N (2004) Nature-inspired computing. IEEE J Intell Syst 19(1):2–3CrossRef
4.
go back to reference Neumann F, Witt C (2010) Bioinspired computation in combinatorial optimization algorithms and their computational complexity. Natural computing series, XII, p 216CrossRef Neumann F, Witt C (2010) Bioinspired computation in combinatorial optimization algorithms and their computational complexity. Natural computing series, XII, p 216CrossRef
5.
go back to reference Corne D, Deb K, Knowles J, Yao X (2010) Selected applications of natural computing. In: Rozenberg G, Back T, Kok JN (eds) Handbook of natural computing. Springer, Berlin Corne D, Deb K, Knowles J, Yao X (2010) Selected applications of natural computing. In: Rozenberg G, Back T, Kok JN (eds) Handbook of natural computing. Springer, Berlin
6.
go back to reference Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
7.
go back to reference Bongard J (2009) Biologically inspired computing. IEEE Comput J 42(4):95–98CrossRef Bongard J (2009) Biologically inspired computing. IEEE Comput J 42(4):95–98CrossRef
8.
go back to reference Forbes N (2000) Biologically inspired computing. Comput Sci Eng 2(6):83–87CrossRef Forbes N (2000) Biologically inspired computing. Comput Sci Eng 2(6):83–87CrossRef
9.
go back to reference Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst I Regul Pap 57(4):1549–8328MathSciNetCrossRef Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst I Regul Pap 57(4):1549–8328MathSciNetCrossRef
11.
go back to reference Rajakumar BR (2014) Lion algorithm for standard and large scale bilinear system identification: a global optimization based on lion’s social behavior. In: 2014 IEEE congress on evolutionary computation (CEC), pp 2116–2123 Rajakumar BR (2014) Lion algorithm for standard and large scale bilinear system identification: a global optimization based on lion’s social behavior. In: 2014 IEEE congress on evolutionary computation (CEC), pp 2116–2123
12.
go back to reference Chander S, Vijaya P, Dhyani P (2016) ADOFL: multi-kernel-based adaptive directive operative fractional lion optimisation algorithm for data clustering. J Intell Syst 27:317CrossRef Chander S, Vijaya P, Dhyani P (2016) ADOFL: multi-kernel-based adaptive directive operative fractional lion optimisation algorithm for data clustering. J Intell Syst 27:317CrossRef
13.
go back to reference Babers R, Hassanien AE, Ghali NI (2015) A nature-inspired metaheuristic lion optimization algorithm for community detection. In: 2015 11th IEEE international computer engineering conference (ICENCO) Babers R, Hassanien AE, Ghali NI (2015) A nature-inspired metaheuristic lion optimization algorithm for community detection. In: 2015 11th IEEE international computer engineering conference (ICENCO)
14.
go back to reference Chander S, Vijaya P, Dhyani P (2017) Multi kernel and dynamic fractional lion optimization algorithm for data clustering. Alex Eng J 57:267CrossRef Chander S, Vijaya P, Dhyani P (2017) Multi kernel and dynamic fractional lion optimization algorithm for data clustering. Alex Eng J 57:267CrossRef
15.
go back to reference Bauer H, Iongh de HH, Silvestre I (2003) Lion social behaviour in the West and Central African Savanna belt. Mamm Biol 68(1):239–243CrossRef Bauer H, Iongh de HH, Silvestre I (2003) Lion social behaviour in the West and Central African Savanna belt. Mamm Biol 68(1):239–243CrossRef
16.
go back to reference Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley Publishing, New YorkMATH Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley Publishing, New YorkMATH
17.
go back to reference Doerr B, Happ E, Klein C (2012) Crossover can probably be useful in evolutionary computation. Theor Comput Sci 425:17–33CrossRef Doerr B, Happ E, Klein C (2012) Crossover can probably be useful in evolutionary computation. Theor Comput Sci 425:17–33CrossRef
18.
go back to reference Back T, Hoffmeister F, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. J Evol Comput 1(1):1–24 (De Jong K (ed), Cambridge: MIT Press) CrossRef Back T, Hoffmeister F, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. J Evol Comput 1(1):1–24 (De Jong K (ed), Cambridge: MIT Press) CrossRef
19.
go back to reference Jong De KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Doctoral thesis, Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor Jong De KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Doctoral thesis, Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor
20.
go back to reference Packer C, Pusey AE (2016) Divided we fall: cooperation among lions. Sci Am 276:52–59CrossRef Packer C, Pusey AE (2016) Divided we fall: cooperation among lions. Sci Am 276:52–59CrossRef
21.
go back to reference Packer C, Pusey AE (1982) Cooperation and competition within coalitions of male lions: Kin selection or game theory? Nature 296(5859):740–742CrossRef Packer C, Pusey AE (1982) Cooperation and competition within coalitions of male lions: Kin selection or game theory? Nature 296(5859):740–742CrossRef
22.
go back to reference Grinnell J, Packer C, Pusey AE (1995) Cooperation in male lions: Kinship, reciprocity or mutualism? Anim Behav 49(1):95–105CrossRef Grinnell J, Packer C, Pusey AE (1995) Cooperation in male lions: Kinship, reciprocity or mutualism? Anim Behav 49(1):95–105CrossRef
23.
go back to reference Packer C, Pusey AE (1982) Cooperation and competition within coalition of male lions: Kin selection or game theory. Macmillan J 296(5859):740–742 Packer C, Pusey AE (1982) Cooperation and competition within coalition of male lions: Kin selection or game theory. Macmillan J 296(5859):740–742
24.
go back to reference Lotfi E, Akbarzadeh-T MR (2016) A winner-take-all approach to emotional neural networks with universal approximation property. Inform Sci 346:369–388CrossRef Lotfi E, Akbarzadeh-T MR (2016) A winner-take-all approach to emotional neural networks with universal approximation property. Inform Sci 346:369–388CrossRef
25.
go back to reference He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990CrossRef He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990CrossRef
26.
go back to reference Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132MathSciNetMATH Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132MathSciNetMATH
27.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef
28.
go back to reference Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New YorkMATH Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New YorkMATH
29.
go back to reference Fogel LJ, Owens AJ, Walsh MJ (1965) Artificial intelligence through a simulation of evolution. In: Proc. 2nd cybern. sci. symp. biophysics cybern. syst., Washington: Spartan Books, pp 131–155 Fogel LJ, Owens AJ, Walsh MJ (1965) Artificial intelligence through a simulation of evolution. In: Proc. 2nd cybern. sci. symp. biophysics cybern. syst., Washington: Spartan Books, pp 131–155
30.
go back to reference Schwefel HP (1995) Evolution and optimum seeking. Wiley, New YorkMATH Schwefel HP (1995) Evolution and optimum seeking. Wiley, New YorkMATH
32.
go back to reference Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: IEEE int. conf. evolution. comput. (ICEC) proc, pp 312–317 Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: IEEE int. conf. evolution. comput. (ICEC) proc, pp 312–317
33.
go back to reference Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larraaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Springer, Berlin Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larraaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation. Springer, Berlin
34.
go back to reference Hedar A, Fukushima M (2006) Evolution strategies learned with automatic termination criteria. In: Proceedings of SCIS-ISIS 2006, Tokyo, Japan Hedar A, Fukushima M (2006) Evolution strategies learned with automatic termination criteria. In: Proceedings of SCIS-ISIS 2006, Tokyo, Japan
35.
go back to reference Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading, p 41 Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading, p 41
37.
go back to reference Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
38.
go back to reference Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef
39.
go back to reference Cheng YP, Li Y, Wang G, Zheng Y-F, Cui XT (2017) A novel bacterial foraging optimization algorithm for feature selection. Expert Syst Appl 83:1–17CrossRef Cheng YP, Li Y, Wang G, Zheng Y-F, Cui XT (2017) A novel bacterial foraging optimization algorithm for feature selection. Expert Syst Appl 83:1–17CrossRef
40.
go back to reference Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214 Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214
41.
go back to reference Yang X-S (2010) Nature inspired metaheuristic algorithms, 2nd edn. Luniver Press, London Yang X-S (2010) Nature inspired metaheuristic algorithms, 2nd edn. Luniver Press, London
42.
go back to reference Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRef Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRef
43.
go back to reference Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. J Neural Comput Appl 27(4):1053–1073CrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. J Neural Comput Appl 27(4):1053–1073CrossRef
44.
go back to reference Mirjalili SM, Mirjalili A, Lewis (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili SM, Mirjalili A, Lewis (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
45.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
46.
go back to reference Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12CrossRef Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12CrossRef
47.
go back to reference Li LL, Yang YF, Wang C-H, Lin K-P (2018) Biogeography-based optimization based on population competition strategy for solving the substation location problem. Expert Syst Appl 97:290–302CrossRef Li LL, Yang YF, Wang C-H, Lin K-P (2018) Biogeography-based optimization based on population competition strategy for solving the substation location problem. Expert Syst Appl 97:290–302CrossRef
48.
go back to reference Price VK, Storn MR (1997) Differential evolution: a simple evolution strategy for fast optimization. Dr Dobb’s J 22:18–24MATH Price VK, Storn MR (1997) Differential evolution: a simple evolution strategy for fast optimization. Dr Dobb’s J 22:18–24MATH
49.
go back to reference Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRef
50.
go back to reference Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68CrossRef Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68CrossRef
Metadata
Title
Optimization using lion algorithm: a biological inspiration from lion’s social behavior
Author
Rajakumar Boothalingam
Publication date
07-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 1-2/2018
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-018-0168-y

Other articles of this Issue 1-2/2018

Evolutionary Intelligence 1-2/2018 Go to the issue

Editorial

Editorial

Premium Partner