Skip to main content
Top
Published in: Wireless Personal Communications 4/2017

28-09-2016

Optimized Spectrum Sensing Algorithm for Cognitive Radio

Authors: C. S. Karthikeyan, M. Suganthi

Published in: Wireless Personal Communications | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electromagnetic spectrum is a meager resource of nature. The current standing spectrum allocation policy is unable to put up the demands of wireless communication. This leads to self-motivated spectrum allocation policy. Cognitive radio (CR) technology is a radiant way to increase spectrum utilization by identifying unused and under-utilized spectrum in vigorously changing environments. Spectrum sensing is a one of the input technique of cognitive radio which detects the existence of primary user in licensed frequency band using self-motivated spectrum allocation policies to use unoccupied spectrum. Spectrum sensing is generally based on energy detection and cyclostationary feature detection. Energy detection is a basic spectrum sensing technique but becomes bleak at a low signal-to-interference-and-noise ratio. The fundamental cyclostationary feature detection based on cyclic spectrum estimation can actively detect feeble signals from primary users with a cost of maximum complexity on implementation. The objective of this work is to implement precious spectrum-sensing method in field programmable gate array with pragmatic complexity for CR. Particularly, The proposed new spectrum-sensing method called the adaptive absolute-self-coherent-restoral algorithm has been introduced. The complexity of the consequential algorithm is better than the prior self-coherent-restoral (SCORE) algorithm, such as adaptive least-SCORE (ALS), adaptive cross-SCORE (ACS). Their performance for spectrum sensing is analytically appraised and compared in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fehske, A. Gaeddert, J. & Reed, J. (2005). A new approach to signal classification using spectral correlation and neural networks. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, ML, November 2005, pp. 144–150. Fehske, A. Gaeddert, J. & Reed, J. (2005). A new approach to signal classification using spectral correlation and neural networks. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, ML, November 2005, pp. 144–150.
2.
go back to reference Agee, B. G., Schell, S. V., & Gardner, W. A. (1990). Spectral self-coherent restoral: A new approach to blind adaptive signal extraction using antenna arrays. Proceedings of the IEEE, 78(4), 753–767.CrossRef Agee, B. G., Schell, S. V., & Gardner, W. A. (1990). Spectral self-coherent restoral: A new approach to blind adaptive signal extraction using antenna arrays. Proceedings of the IEEE, 78(4), 753–767.CrossRef
3.
go back to reference Brown, W. A. (1995). On the theory of cyclostationary signals, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of California, Davis, September 1987. Brown, W. A. (1995). On the theory of cyclostationary signals, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of California, Davis, September 1987.
4.
go back to reference Cabric, D., Mishra, S., & Brodersen, R. (2004) Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, (vol. 1, pp. 772–776). Pacific Grove: California. Cabric, D., Mishra, S., & Brodersen, R. (2004) Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, (vol. 1, pp. 772–776). Pacific Grove: California.
5.
go back to reference Du, K.-L., & Mow, W. H. (2010). Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antennas. IEEE Transactions on Vehicular Technology, 59(4), 1877–1886.CrossRef Du, K.-L., & Mow, W. H. (2010). Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antennas. IEEE Transactions on Vehicular Technology, 59(4), 1877–1886.CrossRef
6.
go back to reference Du, K.-L., & Swamy, M. N. S. (2006). Neural networks in a softcomputing framework. London, U.K.: Springer.MATH Du, K.-L., & Swamy, M. N. S. (2006). Neural networks in a softcomputing framework. London, U.K.: Springer.MATH
7.
go back to reference Du, K.-L., & Swamy, M. N. S. (2008). A class of adaptive cyclostationary beamforming algorithms. Circuits Systems and Signal Processing, 27(1), 35–63.CrossRefMATH Du, K.-L., & Swamy, M. N. S. (2008). A class of adaptive cyclostationary beamforming algorithms. Circuits Systems and Signal Processing, 27(1), 35–63.CrossRefMATH
8.
go back to reference Federal Communications Commission. (2002). Spectrum policy task force. Rep. ET Docket No. 02-135, November 2002. Federal Communications Commission. (2002). Spectrum policy task force. Rep. ET Docket No. 02-135, November 2002.
9.
go back to reference Franks, L. E., & Gardner, W. A. (1971) Estimation for cvclostationary random processes. In Proceedings of the 9th ‘Annu. A&ton Co& Circuit anh System Theory, (pp. 222–231). Franks, L. E., & Gardner, W. A. (1971) Estimation for cvclostationary random processes. In Proceedings of the 9th ‘Annu. A&ton Co& Circuit anh System Theory, (pp. 222–231).
10.
go back to reference Gardner, W. A. (1972). Representation and estimation of cyclostationary processes. Ph.D. dissertation, University of Massachusetts, Amherst, 1972; also Univ. Mass. Res. Inst. Tech. Rep. TR-2, Auguest 1972. Gardner, W. A. (1972). Representation and estimation of cyclostationary processes. Ph.D. dissertation, University of Massachusetts, Amherst, 1972; also Univ. Mass. Res. Inst. Tech. Rep. TR-2, Auguest 1972.
11.
go back to reference Gardner, W. A. (1987). Statistical spectral analysis: An nonprobabilistic theory (p. 1987). Englewood Cliffs, NJ: Prentice-Hall. Gardner, W. A. (1987). Statistical spectral analysis: An nonprobabilistic theory (p. 1987). Englewood Cliffs, NJ: Prentice-Hall.
12.
go back to reference Gardner, W. A. (1988). Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, COM-36(8), 897–906.CrossRef Gardner, W. A. (1988). Signal interception: A unifying theoretical framework for feature detection. IEEE Transactions on Communications, COM-36(8), 897–906.CrossRef
13.
go back to reference Gardner, W. A. (1990). Introduction to random processes with applications to signals and systems (2nd ed., p. 1990). New York: McGraw-Hill. Gardner, W. A. (1990). Introduction to random processes with applications to signals and systems (2nd ed., p. 1990). New York: McGraw-Hill.
14.
go back to reference Gardner, W. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.CrossRef Gardner, W. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.CrossRef
15.
go back to reference Gardner, W. A., & Franks, L. E. (1975). Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, IT-21(1), 4–14.CrossRefMATH Gardner, W. A., & Franks, L. E. (1975). Characterization of cyclostationary random signal processes. IEEE Transactions on Information Theory, IT-21(1), 4–14.CrossRefMATH
16.
go back to reference Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef
17.
go back to reference Ghozzi, M., Marx, F., Dohler, M., & Palicot. J. (2006). Cyclostationarity-based test for detection of vacant frequency bands. In Proceedings of the IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications (Crowncom), Mykonos, Greece, June 2006. Ghozzi, M., Marx, F., Dohler, M., & Palicot. J. (2006). Cyclostationarity-based test for detection of vacant frequency bands. In Proceedings of the IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications (Crowncom), Mykonos, Greece, June 2006.
18.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
19.
go back to reference Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5), 849–877.CrossRef Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5), 849–877.CrossRef
20.
go back to reference Hongning, L., Xianjun, L., Leilei, X. (2014). Analysis of distributed consensus based spectrum sensing algorithm in cognitive radio networks. In 10th International Conference on IEEE Computational Intelligence and Security, (pp. 593–597). Hongning, L., Xianjun, L., Leilei, X. (2014). Analysis of distributed consensus based spectrum sensing algorithm in cognitive radio networks. In 10th International Conference on IEEE Computational Intelligence and Security, (pp. 593–597).
21.
go back to reference Jamali, M., Downey, J., Wilikins, N., Rehm, C. & Tipping, J. (2009). Development of FPGA based high speed fft processor for wideband direction of arrival applications. In Radar Conference, 2009 IEEE, May 2009, pp. 1–4. Jamali, M., Downey, J., Wilikins, N., Rehm, C. & Tipping, J. (2009). Development of FPGA based high speed fft processor for wideband direction of arrival applications. In Radar Conference, 2009 IEEE, May 2009, pp. 1–4.
22.
go back to reference Kay, S. (1998). Fundamentals of statistical signal processing and estimation theory. Upper Saddle River: Prentice Hall. Kay, S. (1998). Fundamentals of statistical signal processing and estimation theory. Upper Saddle River: Prentice Hall.
23.
go back to reference Kishk, S., Mansou, A., & Eldin, M. (2009) Implementation of an OFDM system using FPGA. In Radio Science Conference, 2009. Kishk, S., Mansou, A., & Eldin, M. (2009) Implementation of an OFDM system using FPGA. In Radio Science Conference, 2009.
24.
go back to reference Kokkinen, K., Turunen, V., Kosunen, M., Chaudhari, S., Koivunen, V., & Ryynänen, J. (2009). FPGA implementation of autocorrelation-based feature detector for cognitive radio. In NORCHIP, 2009, November 2009, pp. 1–4. Kokkinen, K., Turunen, V., Kosunen, M., Chaudhari, S., Koivunen, V., & Ryynänen, J. (2009). FPGA implementation of autocorrelation-based feature detector for cognitive radio. In NORCHIP, 2009, November 2009, pp. 1–4.
25.
go back to reference Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. V. (2007). Spectrum sensing in cognitive radios based on multiple cyclic frequencies. In Proceedings of the 2nd International Conference on Cognitive Radio Oriented Wireless Netwerk Communications, Orlando, FL. Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. V. (2007). Spectrum sensing in cognitive radios based on multiple cyclic frequencies. In Proceedings of the 2nd International Conference on Cognitive Radio Oriented Wireless Netwerk Communications, Orlando, FL.
26.
go back to reference Mitola, J., III, & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., III, & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
27.
go back to reference Monzingo, R. A., & Miller, T. W. (1980). Introduction to adaptive arrays. New York: Wiley. Monzingo, R. A., & Miller, T. W. (1980). Introduction to adaptive arrays. New York: Wiley.
28.
go back to reference Oner, M., & Jondral, F. (2004). Cyclostationarity based air interface recognition for software radio systems. In Proceedings of the IEEE Radio and Wireless Conference on Atlanta, Georgia (pp. 263–266). Oner, M., & Jondral, F. (2004). Cyclostationarity based air interface recognition for software radio systems. In Proceedings of the IEEE Radio and Wireless Conference on Atlanta, Georgia (pp. 263–266).
29.
go back to reference Oner, M., & Jondral, F. (2004). Cyclostationarity-based methods for the extraction of the channel allocation information in a spectrum pooling system. In Proceedings of the IEEE Radio and Wireless Conference on, Atlanta, Georgia, (pp. 279–282). Oner, M., & Jondral, F. (2004). Cyclostationarity-based methods for the extraction of the channel allocation information in a spectrum pooling system. In Proceedings of the IEEE Radio and Wireless Conference on, Atlanta, Georgia, (pp. 279–282).
30.
go back to reference Patil, V. M., Patil, S. R. (2016). A survey on Spectrum sensing algoritms for cognitive radio. In IEEE International Conference on Advances in Human Machine Interaction (HMI) 2016. Patil, V. M., Patil, S. R. (2016). A survey on Spectrum sensing algoritms for cognitive radio. In IEEE International Conference on Advances in Human Machine Interaction (HMI) 2016.
31.
go back to reference Petrus, P., Reed, J. H. (1995). Cochannel interference rejection for AMPS signals using spectral correlation properties and an adaptive array. In Proceedings of the IEEE 45th Vehicular Technology Conference, Part 1 (of 2), Chicago, IL, USA, (vol. 1, pp. 30–34). Petrus, P., Reed, J. H. (1995). Cochannel interference rejection for AMPS signals using spectral correlation properties and an adaptive array. In Proceedings of the IEEE 45th Vehicular Technology Conference, Part 1 (of 2), Chicago, IL, USA, (vol. 1, pp. 30–34).
32.
go back to reference Proakis, J. G. (2001). Digital Communications (4th ed.). New York: McGraw-Hill Higher Education.MATH Proakis, J. G. (2001). Digital Communications (4th ed.). New York: McGraw-Hill Higher Education.MATH
33.
go back to reference Proakis, J. G. (2001). Digital Communications (4th ed.). Upper Saddle: Pearson Prentice Hall.MATH Proakis, J. G. (2001). Digital Communications (4th ed.). Upper Saddle: Pearson Prentice Hall.MATH
34.
go back to reference Sahai, A., Tandra, R., Mishra, S. M., & Hoven, N. (2006). Fundamental design tradeoffs in cognitive radio systems. In Proceedings of the International Workshop on Technology and Policy for Accessing Spectrum, Aug 2006. Sahai, A., Tandra, R., Mishra, S. M., & Hoven, N. (2006). Fundamental design tradeoffs in cognitive radio systems. In Proceedings of the International Workshop on Technology and Policy for Accessing Spectrum, Aug 2006.
35.
go back to reference Sayrac, B. (2012). Cognitive radio and its application for next generation cellular and wireless networks. Netherlands: Springer. Sayrac, B. (2012). Cognitive radio and its application for next generation cellular and wireless networks. Netherlands: Springer.
36.
go back to reference Schell, S. V., & Agee, B. C. (1988). Application of the SCORE algorithm and SCORE extensions to sorting in the rank-L environment. In Proceedings of the 22nd Asilomar Conference on Signals, Systems and Computers, (pp. 274–278). Schell, S. V., & Agee, B. C. (1988). Application of the SCORE algorithm and SCORE extensions to sorting in the rank-L environment. In Proceedings of the 22nd Asilomar Conference on Signals, Systems and Computers, (pp. 274–278).
37.
go back to reference Shankar, S., Cordeiro, C., & Challapali, K. (2005). Spectrum agile radios: utilization and sensing architectures. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, ML, November 2005, pp. 160–169. Shankar, S., Cordeiro, C., & Challapali, K. (2005). Spectrum agile radios: utilization and sensing architectures. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, ML, November 2005, pp. 160–169.
38.
go back to reference Stewart, G. W. (1973). lntroduction to matrix computations (p. 1973). New York, NY: Academic Press. Stewart, G. W. (1973). lntroduction to matrix computations (p. 1973). New York, NY: Academic Press.
39.
go back to reference Sutton, P. D., Nolan, K. E., & Doyle, L. E. (2007). Cyclostationary signatures for rendezvous in OFDM-based dynamic spectrum accessnetworks. In Proceedings of the IEEE International Symposium New Frontiers DySPAN, Dublin, Ireland, April 2007, pp. 220–231. Sutton, P. D., Nolan, K. E., & Doyle, L. E. (2007). Cyclostationary signatures for rendezvous in OFDM-based dynamic spectrum accessnetworks. In Proceedings of the IEEE International Symposium New Frontiers DySPAN, Dublin, Ireland, April 2007, pp. 220–231.
40.
go back to reference Sutton, P. D., Nolan, K. E., & Doyle, L. E. (2008). Cyclostationary signatures in practical cognitive radio applications. IEEE Journal on Selected Areas in Communications, 26(1), 13–24.CrossRef Sutton, P. D., Nolan, K. E., & Doyle, L. E. (2008). Cyclostationary signatures in practical cognitive radio applications. IEEE Journal on Selected Areas in Communications, 26(1), 13–24.CrossRef
41.
go back to reference Tang, H. (2005). Some physical layer issues of wide-band cognitive radio systems. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, (pp. 151–159). Baltimore: Maryland. Tang, H. (2005). Some physical layer issues of wide-band cognitive radio systems. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, (pp. 151–159). Baltimore: Maryland.
42.
go back to reference Verma, Y., Dewangan, N. (2015). Co-operative spectrum sensing in cognitive radio under Rayleigh fading channel. In IEEE Computer, Communication and Control, (pp. 1–5). Verma, Y., Dewangan, N. (2015). Co-operative spectrum sensing in cognitive radio under Rayleigh fading channel. In IEEE Computer, Communication and Control, (pp. 1–5).
43.
go back to reference Wu, Q., & Wong, K. M. (1996). Blind adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing, 44(11), 2757–2767.CrossRef Wu, Q., & Wong, K. M. (1996). Blind adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing, 44(11), 2757–2767.CrossRef
44.
go back to reference Yu, S.-J., & Lee, J.-H. (1996). Adaptive array beamforming for cyclostationary signals. IEEE Transactions on Antennas and Propagation, 44(7), 943–953.CrossRef Yu, S.-J., & Lee, J.-H. (1996). Adaptive array beamforming for cyclostationary signals. IEEE Transactions on Antennas and Propagation, 44(7), 943–953.CrossRef
45.
go back to reference Yücek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130. (First Quarter).CrossRef Yücek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130. (First Quarter).CrossRef
Metadata
Title
Optimized Spectrum Sensing Algorithm for Cognitive Radio
Authors
C. S. Karthikeyan
M. Suganthi
Publication date
28-09-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3642-9

Other articles of this Issue 4/2017

Wireless Personal Communications 4/2017 Go to the issue