Skip to main content
Top

2020 | OriginalPaper | Chapter

Oriented Diameter of Star Graphs

Authors : K. S. Ajish Kumar, Deepak Rajendraprasad, K. S. Sudeep

Published in: Algorithms and Discrete Applied Mathematics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An orientation of an undirected graph G is an assignment of exactly one direction to each edge of G. Converting two-way traffic networks to one-way traffic networks and bidirectional communication networks to unidirectional communication networks are practical instances of graph orientations. In these contexts minimising the diameter of the resulting oriented graph is of prime interest.
The n-star network topology was proposed as an alternative to the hypercube network topology for multiprocessor systems by Akers and Krishnamurthy [IEEE Trans. on Computers (1989)]. The n-star graph \(S_n\) consists of n! vertices, each labelled with a distinct permutation of [n]. Two vertices are adjacent if their labels differ exactly in the first and one other position. \(S_n\) is an \((n-1)\)-regular, vertex-transitive graph with diameter \(\lfloor 3(n-1)/2\rfloor \). Orientations of \(S_n\), called unidirectional star graphs and distributed routing protocols over them were studied by Day and Tripathi [Information Processing Letters (1993)] and Fujita [The First International Symposium on Computing and Networking (CANDAR 2013)]. Fujita showed that the (directed) diameter of this unidirectional star graph \(\overrightarrow{S_n}\) is at most \(\lceil 5n/2\rceil + 2\).
In this paper, we propose a new distributed routing algorithm for the same \(\overrightarrow{S_n}\) analysed by Fujita, which routes a packet from any node s to any node t at an undirected distance d from s using at most \(\min \{4d+4, 2n+4\}\) hops. This shows that the (directed) diameter of \(\overrightarrow{S_n}\) is at most \(2n+4\). We also show that the diameter of \(\overrightarrow{S_n}\) is at least 2n when \(n \ge 7\), thereby showing that our upper bound is tight up to an additive factor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)MathSciNetMATHCrossRef Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)MathSciNetMATHCrossRef
2.
go back to reference Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math. Monthly 46(5), 281–283 (1939)MATHCrossRef Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math. Monthly 46(5), 281–283 (1939)MATHCrossRef
5.
7.
go back to reference Cheng, E., Lipman, M.J.: Unidirectional (n, k)-star graphs. J. Interconnect. Netw. 3(01n02), 19–34 (2002)CrossRef Cheng, E., Lipman, M.J.: Unidirectional (n, k)-star graphs. J. Interconnect. Netw. 3(01n02), 19–34 (2002)CrossRef
8.
9.
go back to reference Fomin, F.V., Matamala, M., Rapaport, I.: Complexity of approximating the oriented diameter of chordal graphs. J. Graph Theory 45(4), 255–269 (2004)MathSciNetMATHCrossRef Fomin, F.V., Matamala, M., Rapaport, I.: Complexity of approximating the oriented diameter of chordal graphs. J. Graph Theory 45(4), 255–269 (2004)MathSciNetMATHCrossRef
10.
go back to reference Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: AT-free graphs: linear bounds for the oriented diameter. Discrete Appl. Math. 141(1–3), 135–148 (2004)MathSciNetMATHCrossRef Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: AT-free graphs: linear bounds for the oriented diameter. Discrete Appl. Math. 141(1–3), 135–148 (2004)MathSciNetMATHCrossRef
12.
go back to reference Akers, S.B.: The star graph: an attractive alternative to the n-cube. In: Proceedings of International Conference on Parallel Processing (1987) Akers, S.B.: The star graph: an attractive alternative to the n-cube. In: Proceedings of International Conference on Parallel Processing (1987)
Metadata
Title
Oriented Diameter of Star Graphs
Authors
K. S. Ajish Kumar
Deepak Rajendraprasad
K. S. Sudeep
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39219-2_25

Premium Partner