Skip to main content
Top

2023 | OriginalPaper | Chapter

Osteoarthritis Detection and Classification in Knee X-Ray Images Using Particle Swarm Optimization with Deep Neural Network

Authors : N. Hema Rajini, A. Anton Smith

Published in: Interpretable Cognitive Internet of Things for Healthcare

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Explainable artificial intelligence (XAI) involves a collection of processes and approaches which enables human users to comprehend and trust the results and output produced by machine learning (ML) approaches. XAI is employed for describing the AI model, its expected impact, and potential biases. At the same time, Internet of Healthcare Things (IoHT) has become a hot research topic in the healthcare sector which assist in the disease diagnostic process. Presently, an efficient computer-aided diagnosis (CAD) model is needed for diagnosing osteoarthritis (OA). This study designs a new particle swarm optimization (PSO) model with deep neural network (DNN), named PSO-DNN technique, for the identification and categorization of osteoarthritis from the knee X-ray images in an IoHT environment. The presented method helps to distinguish between well and diseased knee X-ray images. Here, a guided filter (GF) and adaptive histogram equalization models are correspondingly employed to remove noises and enhance the images. Global thresholding-based segmentation model is employed for extracting the synovial cavity regions from the image, and curvature values are determined. For drawing a good validation, the experimentation takes place on the real-time patient-oriented images gathered from the medical organizations. From the simulation outcome, the presented PSO-DNN model confirmed the superior performance of the applied images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou, X., Liang, W., Kevin, I., Wang, K., Wang, H., Yang, L. T., & Jin, Q. (2020). Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet of Things Journal, 7(7), 6429–6438.CrossRef Zhou, X., Liang, W., Kevin, I., Wang, K., Wang, H., Yang, L. T., & Jin, Q. (2020). Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet of Things Journal, 7(7), 6429–6438.CrossRef
2.
go back to reference Jesmin, S., Kaiser, M. S., & Mahmud, M. (2020). Artificial and internet of healthcare things based Alzheimer care during COVID 19. In International conference on brain informatics (pp. 263–274). Springer. Jesmin, S., Kaiser, M. S., & Mahmud, M. (2020). Artificial and internet of healthcare things based Alzheimer care during COVID 19. In International conference on brain informatics (pp. 263–274). Springer.
3.
go back to reference Kaur, H., Atif, M., & Chauhan, R. (2020). An internet of healthcare things (IoHT)-based healthcare monitoring system. In Advances in intelligent computing and communication (pp. 475–482). Springer. Kaur, H., Atif, M., & Chauhan, R. (2020). An internet of healthcare things (IoHT)-based healthcare monitoring system. In Advances in intelligent computing and communication (pp. 475–482). Springer.
4.
go back to reference Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., & Chatila, R. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.CrossRef Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., & Chatila, R. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.CrossRef
5.
go back to reference Anifah, L., Purnomo, M., Mengko, T., & Purnama, I. (2018). Osteoarthritis severity determination using self organizingmap based Gabor kernel. IOP Conference Series: Materials Science and Engineering, 306, 12071.CrossRef Anifah, L., Purnomo, M., Mengko, T., & Purnama, I. (2018). Osteoarthritis severity determination using self organizingmap based Gabor kernel. IOP Conference Series: Materials Science and Engineering, 306, 12071.CrossRef
6.
go back to reference Navale, D. I., Hegadi, R. S., & Mendgudli, N. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. In IEEE international WIE conference on electrical and computer engineering (pp. 338–341). IEEE. Navale, D. I., Hegadi, R. S., & Mendgudli, N. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. In IEEE international WIE conference on electrical and computer engineering (pp. 338–341). IEEE.
7.
go back to reference Antony, J., McGuinness, K., O’Connor, N. E., & Moran, K. (2016). Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In 23rd international conference on pattern recognition (pp. 1195–1200). IEEE. Antony, J., McGuinness, K., O’Connor, N. E., & Moran, K. (2016). Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In 23rd international conference on pattern recognition (pp. 1195–1200). IEEE.
8.
go back to reference Anifah, L., Purnama, I. K. E., Hariadi, M., & Purnomo, M. H. (2013). Osteoarthritis classification using self organizing map based on Gabor kernel and contrast-limited adaptive histogram equalization. Open Biomedical Engineering Journal, 7, 18–28.CrossRef Anifah, L., Purnama, I. K. E., Hariadi, M., & Purnomo, M. H. (2013). Osteoarthritis classification using self organizing map based on Gabor kernel and contrast-limited adaptive histogram equalization. Open Biomedical Engineering Journal, 7, 18–28.CrossRef
9.
go back to reference Suresha, S., Kidzi’nski, L., Halilaj, E., Gold, G., & Delp, S. (2018). Automated staging of knee osteoarthritis severity using deep neural networks. Osteoarthritis and Cartilage, 26(1), S440–S441. Suresha, S., Kidzi’nski, L., Halilaj, E., Gold, G., & Delp, S. (2018). Automated staging of knee osteoarthritis severity using deep neural networks. Osteoarthritis and Cartilage, 26(1), S440–S441.
10.
go back to reference Raj, A., Vishwanathan, S., Ajani, B., Krishnan, K., & Agarwal, H. (2018). Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In IEEE 15th international symposium on biomedical imaging (pp. 851–854). IEEE. Raj, A., Vishwanathan, S., Ajani, B., Krishnan, K., & Agarwal, H. (2018). Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In IEEE 15th international symposium on biomedical imaging (pp. 851–854). IEEE.
11.
go back to reference Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Automated fractured bone segmentation and labeling from CT images. Journal of Medical Systems, 43(3), 60.CrossRef Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Automated fractured bone segmentation and labeling from CT images. Journal of Medical Systems, 43(3), 60.CrossRef
12.
go back to reference Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Chapter 7: Segmentation and analysis of CT images for bone fracture detection and labeling. In Medical imaging: Artificial intelligence, image recognition, and machine learning techniques. CRC Press. Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Chapter 7: Segmentation and analysis of CT images for bone fracture detection and labeling. In Medical imaging: Artificial intelligence, image recognition, and machine learning techniques. CRC Press.
13.
go back to reference Ningsih, D. R. (2020). Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. International Journal of Image, Graphics and Signal Processing, 12(2), 30.CrossRef Ningsih, D. R. (2020). Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. International Journal of Image, Graphics and Signal Processing, 12(2), 30.CrossRef
14.
go back to reference Zhang, X., Liu, H., & Tu, L. (2020). A modified particle swarm optimization for multimodal multi-objective optimization. Engineering Applications of Artificial Intelligence, 95, 103905.CrossRef Zhang, X., Liu, H., & Tu, L. (2020). A modified particle swarm optimization for multimodal multi-objective optimization. Engineering Applications of Artificial Intelligence, 95, 103905.CrossRef
16.
go back to reference Fernandes, F. E., Jr., & Yen, G. G. (2019). Particle swarm optimization of deep neural networks architectures for image classification. Swarm and Evolutionary Computation, 49, 62–74.CrossRef Fernandes, F. E., Jr., & Yen, G. G. (2019). Particle swarm optimization of deep neural networks architectures for image classification. Swarm and Evolutionary Computation, 49, 62–74.CrossRef
17.
go back to reference Hegadi, R. S., Navale, D. I., Pawar, T. D., & Ruikar, D. D. (2019). Osteoarthritis detection and classification from knee X-ray images based on artificial neural network. In Recent Trends in image processing and pattern recognition: Second international conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part II 2 (pp. 97–105). Springer. Hegadi, R. S., Navale, D. I., Pawar, T. D., & Ruikar, D. D. (2019). Osteoarthritis detection and classification from knee X-ray images based on artificial neural network. In Recent Trends in image processing and pattern recognition: Second international conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part II 2 (pp. 97–105). Springer.
18.
go back to reference Saad, G., Khadour, A., & Kanafani, Q. (2016). ANN and Adaboost application for automatic detection of microcalcifications in breast cancer. The Egyptian Journal of Radiology and Nuclear Medicine, 47(4), 1803–1814. Saad, G., Khadour, A., & Kanafani, Q. (2016). ANN and Adaboost application for automatic detection of microcalcifications in breast cancer. The Egyptian Journal of Radiology and Nuclear Medicine, 47(4), 1803–1814.
19.
go back to reference Qing-Yun, S., & Fu, K. S. (1983). A method for the design of binary tree classifiers. Pattern Recognition, 16(6), 593–603. Qing-Yun, S., & Fu, K. S. (1983). A method for the design of binary tree classifiers. Pattern Recognition, 16(6), 593–603.
Metadata
Title
Osteoarthritis Detection and Classification in Knee X-Ray Images Using Particle Swarm Optimization with Deep Neural Network
Authors
N. Hema Rajini
A. Anton Smith
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-08637-3_5