Skip to main content
Top
Published in: Journal of Materials Science 16/2019

20-05-2019 | Materials for life sciences

Osteogenic cells differentiation on topological surfaces under ultrasound stimulation

Authors: Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Cezar Stefan Popovici, Catalin Romeo Luculescu

Published in: Journal of Materials Science | Issue 16/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current trends in bone tissue engineering aim to fasten the cells osteogenic differentiation by mechanical stimulation. To date, several approaches have proved efficient for this purpose. One is related to changing the shape of the cells nuclei using topological surfaces with appropriate dimensions and stiffness. Another successful method is by low-intensity pulsed ultrasound stimulation (LIPUS) of the cells. The goal of this proof-of-concept study is to introduce and validate, for the first time, the synergistic effect of topological surfaces and LIPUS for improving the osteogenic differentiation of osteoblast-like cells. Cells were grown on topological surfaces consisting of vertical microtubes fabricated by laser direct writing. The flexibility of the topological surfaces was tuned by varying the microtubes’ height. The spatial arrangement and dimensions of the microtubes limited the cell–cell interactions and allowed us to observe individual cells. A finite element model simulation was proposed for explaining the cell–surface interaction details. We monitored the cells nuclei deformations in response to the topological surfaces in conjunction with LIPUS. The topological surfaces alone induced dramatic changes of the shape of the cells nuclei that wrapped around the microtubes. The nuclei deformation was further increased by LIPUS. This synergy between the topological surfaces and LIPUS allowed us to obtain an increase of up to 200% in the cells osteogenic differentiation, as determined by ALP activity and osteocalcin secretion measurements, in comparison with flat surfaces in static regime. A causal relationship between the nuclei deformation and the cells osteogenic differentiation was established.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
12.
go back to reference Dimitriou R, Babis GC (2007) Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact 7:253–265 Dimitriou R, Babis GC (2007) Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact 7:253–265
15.
go back to reference Paun IA, Popescu RC, Mustaciosu CC, Zamfirescu M, Calin BS, Mihailescu M, Dinescu M, Popescu A, Chioibasu D, Soproniy M, Luculescu CR (2018) Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration. Biofabrication 10:025009. https://doi.org/10.1088/1758-5090/aaa718 CrossRef Paun IA, Popescu RC, Mustaciosu CC, Zamfirescu M, Calin BS, Mihailescu M, Dinescu M, Popescu A, Chioibasu D, Soproniy M, Luculescu CR (2018) Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration. Biofabrication 10:025009. https://​doi.​org/​10.​1088/​1758-5090/​aaa718 CrossRef
25.
go back to reference Bandow K, Nishikawa Y, Ohnishi T, Kakimoto K, Soejima K, Iwabuchi S, Kuroe K, Matsuguchi T (2007) Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol 211:392–398. https://doi.org/10.1002/jcp.20944 CrossRef Bandow K, Nishikawa Y, Ohnishi T, Kakimoto K, Soejima K, Iwabuchi S, Kuroe K, Matsuguchi T (2007) Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin II type 1 receptor. J Cell Physiol 211:392–398. https://​doi.​org/​10.​1002/​jcp.​20944 CrossRef
26.
go back to reference Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K (2009) Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin 41:108–115CrossRef Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K (2009) Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin 41:108–115CrossRef
41.
go back to reference Zheng H, Lu L, Song JL, Gao X, Deng F, Wang ZB (2011) Low intensity pulsed ultrasound combined with guided tissue regeneration for promoting the repair of defect at canines periodontal fenestration in beagle dogs. Zhonghua Kouqiang Yixue Zazhi 46:431–436 Zheng H, Lu L, Song JL, Gao X, Deng F, Wang ZB (2011) Low intensity pulsed ultrasound combined with guided tissue regeneration for promoting the repair of defect at canines periodontal fenestration in beagle dogs. Zhonghua Kouqiang Yixue Zazhi 46:431–436
42.
go back to reference Lim K, Kim J, Seonwoo H, Park SH, Choung PH, Chung JH (2013) In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. Biomed Res Int 2013:269724. https://doi.org/10.1155/2013/269724 Lim K, Kim J, Seonwoo H, Park SH, Choung PH, Chung JH (2013) In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. Biomed Res Int 2013:269724. https://​doi.​org/​10.​1155/​2013/​269724
Metadata
Title
Osteogenic cells differentiation on topological surfaces under ultrasound stimulation
Authors
Irina Alexandra Paun
Bogdan Stefanita Calin
Cosmin Catalin Mustaciosu
Mona Mihailescu
Cezar Stefan Popovici
Catalin Romeo Luculescu
Publication date
20-05-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03680-9

Other articles of this Issue 16/2019

Journal of Materials Science 16/2019 Go to the issue

Premium Partners