Skip to main content
Top

2015 | OriginalPaper | Chapter

19. Other Topics

Author : Christian Kuehn

Published in: Multiple Time Scale Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter collects various topics that did not fit immediately within the main flow of the book. Nevertheless, they have been included here due to their general importance and interaction with fast–slow systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[ACVV13]
go back to reference M. Avendano-Camacho, J.A. Vallejo, and Yu. Vorobiev. Higher order corrections to adiabatic invariants of generalized slow–fast Hamiltonian systems. arXiv:1305.3974v1, pages 1–22, 2013. M. Avendano-Camacho, J.A. Vallejo, and Yu. Vorobiev. Higher order corrections to adiabatic invariants of generalized slow–fast Hamiltonian systems. arXiv:1305.3974v1, pages 1–22, 2013.
[AG13]
go back to reference G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.
[AKN06]
go back to reference V.I. Arnold, V.V. Kozlov, and A.I. Neishstadt. Mathematical Aspects of Classical and Celestial Mechanics. Springer, 3rd edition, 2006. V.I. Arnold, V.V. Kozlov, and A.I. Neishstadt. Mathematical Aspects of Classical and Celestial Mechanics. Springer, 3rd edition, 2006.
[AMN+03]
go back to reference R.B. Alley, J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, and J.M. Wallace. Abrupt climate change. Science, 299:2005–2010, 2003. R.B. Alley, J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, and J.M. Wallace. Abrupt climate change. Science, 299:2005–2010, 2003.
[And92]
go back to reference J.L. Anderson. Multiple time scale methods for adiabatic systems. Amer. J. Phys., 60:923–927, 1992.MATHMathSciNet J.L. Anderson. Multiple time scale methods for adiabatic systems. Amer. J. Phys., 60:923–927, 1992.MATHMathSciNet
[ANZ11]
go back to reference A.V. Artemyev, A.I. Neishtadt, and L.M. Zelenyi. Jumps of adiabatic invariant at the separatrix of a degenerate saddle point. Chaos, 21:043120, 2011. A.V. Artemyev, A.I. Neishtadt, and L.M. Zelenyi. Jumps of adiabatic invariant at the separatrix of a degenerate saddle point. Chaos, 21:043120, 2011.
[ANZV10]
go back to reference A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, and D.L. Vainchtein. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves. Chaos, 20:043128, 2010.MathSciNet A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, and D.L. Vainchtein. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves. Chaos, 20:043128, 2010.MathSciNet
[AP98a]
go back to reference P. Auger and J.-C. Poggiale. Aggregation and emergence in systems of ordinary differential equations. Math. Comput. Model., 27(4):1–21, 1998.MATHMathSciNet P. Auger and J.-C. Poggiale. Aggregation and emergence in systems of ordinary differential equations. Math. Comput. Model., 27(4):1–21, 1998.MATHMathSciNet
[Arn97]
go back to reference V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1997. V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1997.
[Art04]
go back to reference Z. Artstein. Distributional convergence in planar dynamics and singular perturbations. J. Differential Equations, 201:250–286, 2004.MATHMathSciNet Z. Artstein. Distributional convergence in planar dynamics and singular perturbations. J. Differential Equations, 201:250–286, 2004.MATHMathSciNet
[AWVC12]
go back to reference P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. R. Soc. A, 370:1166–1184, 2012. P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. R. Soc. A, 370:1166–1184, 2012.
[BC94a]
go back to reference D. Bainov and V. Covachev. Impulsive differential equations with a small parameter. World Scientific, 1994. D. Bainov and V. Covachev. Impulsive differential equations with a small parameter. World Scientific, 1994.
[BCP87]
go back to reference K.E. Brenan, S.L. Campbell, and L.R. Petzhold. Numerical solution of initial-value problems in differential-algebraic equations. SIAM, 1987. K.E. Brenan, S.L. Campbell, and L.R. Petzhold. Numerical solution of initial-value problems in differential-algebraic equations. SIAM, 1987.
[BdCdS10]
go back to reference C.A. Buzzi, T. de Carvalho, and P.R. da Silva. Canard cycles and Poincaré index of non-smooth vector fields on the plane. arXiv:1002:4169v2, pages 1–20, 2010. C.A. Buzzi, T. de Carvalho, and P.R. da Silva. Canard cycles and Poincaré index of non-smooth vector fields on the plane. arXiv:1002:4169v2, pages 1–20, 2010.
[BdST05]
go back to reference C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Singular perturbation problems for time-reversible systems. Proc. Amer. Math. Soc., 133(11):3323–3331, 2005.MATHMathSciNet C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Singular perturbation problems for time-reversible systems. Proc. Amer. Math. Soc., 133(11):3323–3331, 2005.MATHMathSciNet
[BdST06]
go back to reference C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. A singular approach to discontinuous vector fields on the plane. J. Diff. Eq., 231:633–655, 2006.MATH C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. A singular approach to discontinuous vector fields on the plane. J. Diff. Eq., 231:633–655, 2006.MATH
[BdST12]
go back to reference C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Slow-fast systems on algebraic varieties bordering piecewise-smooth dynamical systems. Bull. Sci. Math., 136(4):444–462, 2012.MATHMathSciNet C.A. Buzzi, P.R. da Silva, and M.A. Teixeira. Slow-fast systems on algebraic varieties bordering piecewise-smooth dynamical systems. Bull. Sci. Math., 136(4):444–462, 2012.MATHMathSciNet
[Ber84]
go back to reference M.V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A, 392(1802):45–57, 1984.MATH M.V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A, 392(1802):45–57, 1984.MATH
[Ber85]
go back to reference M.V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A, 18(1):15, 1985. M.V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A, 18(1):15, 1985.
[Ber87]
go back to reference M.V. Berry. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. A, 414(1846):31–46, 1987. M.V. Berry. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. A, 414(1846):31–46, 1987.
[BF13]
go back to reference F. Battelli and M. Fečkan. Fast-slow dynamical approximation of forced impact systems near periodic solutions. Bound. Value Probl., 2013:71, 2013. F. Battelli and M. Fečkan. Fast-slow dynamical approximation of forced impact systems near periodic solutions. Bound. Value Probl., 2013:71, 2013.
[BG02d]
go back to reference N. Berglund and B. Gentz. Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations. Stoch. Dyn., 2:327–356, 2002.MATHMathSciNet N. Berglund and B. Gentz. Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations. Stoch. Dyn., 2:327–356, 2002.MATHMathSciNet
[BG08b]
go back to reference N. Brännström and V. Gelfreich. Drift of slow variables in slow–fast Hamiltonian systems. Physica D, 237:2913–2921, 2008.MATHMathSciNet N. Brännström and V. Gelfreich. Drift of slow variables in slow–fast Hamiltonian systems. Physica D, 237:2913–2921, 2008.MATHMathSciNet
[BGS97]
go back to reference F. Broner, G.H. Goldsztein, and S.H. Strogatz. Dynamical hysteresis without static hysteresis: scaling laws and asymptotic expansions. SIAM J. Appl. Math., 57(4):1163–1187, 1997.MATHMathSciNet F. Broner, G.H. Goldsztein, and S.H. Strogatz. Dynamical hysteresis without static hysteresis: scaling laws and asymptotic expansions. SIAM J. Appl. Math., 57(4):1163–1187, 1997.MATHMathSciNet
[Bil10]
go back to reference A. Billoire. Distribution of timescales in the Sherrington–Kirkpatrick model. J. Stat. Mech., 11:P11034, 2010. A. Billoire. Distribution of timescales in the Sherrington–Kirkpatrick model. J. Stat. Mech., 11:P11034, 2010.
[BK91]
go back to reference D.L. Bosley and J. Kevorkian. Sustained resonance in very slowly varying oscillatory Hamiltonian systems. SIAM J. Appl. Math., 51(2):439–471, 1991.MATHMathSciNet D.L. Bosley and J. Kevorkian. Sustained resonance in very slowly varying oscillatory Hamiltonian systems. SIAM J. Appl. Math., 51(2):439–471, 1991.MATHMathSciNet
[BK92]
go back to reference D.L. Bosley and J. Kevorkian. Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian systems. SIAM J. Appl. Math., 52(2):494–527, 1992.MATHMathSciNet D.L. Bosley and J. Kevorkian. Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian systems. SIAM J. Appl. Math., 52(2):494–527, 1992.MATHMathSciNet
[Bla91]
go back to reference F. Blais. Asymptotic expansions of rivers. In E. Benoît, editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 181–189. Springer, 1991. F. Blais. Asymptotic expansions of rivers. In E. Benoît, editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 181–189. Springer, 1991.
[BLH+09]
go back to reference J. Bakke, Ø. Lie, E. Heegaard, T. Dokken, G.H. Haug, H.H. Birks, P. Dulski, and T. Nilsen. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci., 2:202–205, 2009. J. Bakke, Ø. Lie, E. Heegaard, T. Dokken, G.H. Haug, H.H. Birks, P. Dulski, and T. Nilsen. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci., 2:202–205, 2009.
[BM72]
go back to reference M.V. Berry and K.E. Mount. Semiclassical approximations in wave mechanics. Rep. Prog. Phys., 35(1):315, 1972. M.V. Berry and K.E. Mount. Semiclassical approximations in wave mechanics. Rep. Prog. Phys., 35(1):315, 1972.
[BMN10]
go back to reference M. Bobieński, P. Mardesić, and D. Novikov. Pseudo-abelian integrals on slow–fast Darboux systems. arXiv:1007.2001v1, pages 1–11, 2010. M. Bobieński, P. Mardesić, and D. Novikov. Pseudo-abelian integrals on slow–fast Darboux systems. arXiv:1007.2001v1, pages 1–11, 2010.
[Bor04a]
go back to reference A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. I. Differ. Equ., 40(3):309–317, 2004. A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. I. Differ. Equ., 40(3):309–317, 2004.
[Bor04b]
go back to reference A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. II. Differ. Equ., 40(4):491–501, 2004. A.V. Borovskikh. Investigation of relaxation oscillations by constructive nonstandard analysis. II. Differ. Equ., 40(4):491–501, 2004.
[BS96]
go back to reference M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer, 1996. M. Brokate and J. Sprekels. Hysteresis and Phase Transitions. Springer, 1996.
[BS98]
go back to reference F.A. Bornemann and C. Schütte. A mathematical investigation of the Car–Parrinello method. Numer. Math., 78(3):359–376, 1998.MATHMathSciNet F.A. Bornemann and C. Schütte. A mathematical investigation of the Car–Parrinello method. Numer. Math., 78(3):359–376, 1998.MATHMathSciNet
[BSG10]
go back to reference N. Brännström, E. De Simone, and V. Gelfreich. Geometric shadowing in slow–fast Hamiltonian systems. Nonlinearity, 23:1169, 2010.MATHMathSciNet N. Brännström, E. De Simone, and V. Gelfreich. Geometric shadowing in slow–fast Hamiltonian systems. Nonlinearity, 23:1169, 2010.MATHMathSciNet
[BYB10]
go back to reference M. Benbachir, K. Yadi, and R. Bebbouchi. Slow and fast systems with Hamiltonian reduced problems. Electr. J. Diff. Eq., 2010(6):1–19, 2010.MathSciNet M. Benbachir, K. Yadi, and R. Bebbouchi. Slow and fast systems with Hamiltonian reduced problems. Electr. J. Diff. Eq., 2010(6):1–19, 2010.MathSciNet
[Cal93]
go back to reference J.-L. Callot. Champs lents-rapides complexes à une dimension lente. Ann. Sci. École Norm. Sup., 26(2):149–173, 1993.MATHMathSciNet J.-L. Callot. Champs lents-rapides complexes à une dimension lente. Ann. Sci. École Norm. Sup., 26(2):149–173, 1993.MATHMathSciNet
[Cam77]
go back to reference S.L. Campbell. Linear systems of differential equations with singular coefficients. SIAM J. Math. Anal., 8(6):1057–1066, 1977.MATHMathSciNet S.L. Campbell. Linear systems of differential equations with singular coefficients. SIAM J. Math. Anal., 8(6):1057–1066, 1977.MATHMathSciNet
[Cam80b]
go back to reference S.L. Campbell. Singular Systems of Differential Equations I. Pitman, 1980. S.L. Campbell. Singular Systems of Differential Equations I. Pitman, 1980.
[CB06]
go back to reference S.R. Carpenter and W.A. Brock. Rising variance: a leading indicator of ecological transition. Ecology Letters, 9:311–318, 2006. S.R. Carpenter and W.A. Brock. Rising variance: a leading indicator of ecological transition. Ecology Letters, 9:311–318, 2006.
[CBT+11]
go back to reference M. Chertkov, S. Backhaus, K. Turzisyn, V. Chernyak, and V. Lebedev. Voltage collapse and ODE approach to power flows: analysis of a feeder line with static disorder in consumption/production. arXiv:1106.5003v1, pages 1–8, 2011. M. Chertkov, S. Backhaus, K. Turzisyn, V. Chernyak, and V. Lebedev. Voltage collapse and ODE approach to power flows: analysis of a feeder line with static disorder in consumption/production. arXiv:1106.5003v1, pages 1–8, 2011.
[CCB+01]
go back to reference J.S. Clark, S.R. Carpenter, M. Barber, S. Collins, A. Dobson, J.A. Foley, D.M. Lodge, M. Pascual, R. Pielke Jr., W. Pizer, C. Pringle, W.V. Reid, K. A. Rose, O. Sala, W.H. Schlesinger, D.H. Wall, and D. Wear. Ecological forecasts: an emerging imperative. Science, 293:657–660, 2001. J.S. Clark, S.R. Carpenter, M. Barber, S. Collins, A. Dobson, J.A. Foley, D.M. Lodge, M. Pascual, R. Pielke Jr., W. Pizer, C. Pringle, W.V. Reid, K. A. Rose, O. Sala, W.H. Schlesinger, D.H. Wall, and D. Wear. Ecological forecasts: an emerging imperative. Science, 293:657–660, 2001.
[CCP+11]
go back to reference S.R. Carpenter, J.J. Cole, M.L. Pace, R. Batt, W.A. Brock, T. Cline, J. Coloso, J.R. Hodgson, J.F. Kitchell, D.A. Seekell, L. Smith, and B. Weidel. Early warning signs of regime shifts: a whole-ecosystem experiment. Science, 332:1079–1082, 2011. S.R. Carpenter, J.J. Cole, M.L. Pace, R. Batt, W.A. Brock, T. Cline, J. Coloso, J.R. Hodgson, J.F. Kitchell, D.A. Seekell, L. Smith, and B. Weidel. Early warning signs of regime shifts: a whole-ecosystem experiment. Science, 332:1079–1082, 2011.
[Ces94]
go back to reference P. Cessi. A simple box model of stochastically forced thermohaline circulation. J. Phys. Oceanogr., 24:1911–1920, 1994. P. Cessi. A simple box model of stochastically forced thermohaline circulation. J. Phys. Oceanogr., 24:1911–1920, 1994.
[CET86]
go back to reference J.R. Cary, D.F. Escande, and J.L. Tennyson. Adiabatic-invariant change due to separatrix crossing. Phys. Rev. A, 34(5):4256–4275, 1986. J.R. Cary, D.F. Escande, and J.L. Tennyson. Adiabatic-invariant change due to separatrix crossing. Phys. Rev. A, 34(5):4256–4275, 1986.
[CG95a]
go back to reference S.L. Campbell and C.W. Gear. The index of general nonlinear DAEs. Numer. Math., 72:173–196, 1995.MATHMathSciNet S.L. Campbell and C.W. Gear. The index of general nonlinear DAEs. Numer. Math., 72:173–196, 1995.MATHMathSciNet
[CG95b]
go back to reference S.L. Campbell and E. Griepentrog. Solvability of general differential algebraic equations. SIAM J. Sci. Comput., 16(2):257–270, 1995.MATHMathSciNet S.L. Campbell and E. Griepentrog. Solvability of general differential algebraic equations. SIAM J. Sci. Comput., 16(2):257–270, 1995.MATHMathSciNet
[Chu92]
go back to reference C.K. Chui. An Introduction to Wavelets. Academic Press, 1992. C.K. Chui. An Introduction to Wavelets. Academic Press, 1992.
[CJR76]
go back to reference S.L. Campbell, C.D. Meyer Jr, and N.J. Rose. Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math., 31(3):411–425, 1976.MATHMathSciNet S.L. Campbell, C.D. Meyer Jr, and N.J. Rose. Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math., 31(3):411–425, 1976.MATHMathSciNet
[CKK+07]
go back to reference A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd. When Shil’nikov meets Hopf in excitable systems. SIAM J. Appl. Dyn. Syst., 6(4):663–693, 2007.MATHMathSciNet A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd. When Shil’nikov meets Hopf in excitable systems. SIAM J. Appl. Dyn. Syst., 6(4):663–693, 2007.MATHMathSciNet
[CL91]
go back to reference S.L. Campbell and B. Leimkuhler. Differentiation of constraints in differential-algebraic equations. J. Struct. Mech., 19:19–39, 1991.MathSciNet S.L. Campbell and B. Leimkuhler. Differentiation of constraints in differential-algebraic equations. J. Struct. Mech., 19:19–39, 1991.MathSciNet
[CM95]
go back to reference S.L. Campbell and E. Moore. Constraint preserving integrators for general nonlinear higher index DAEs. Numer. Math., 69(4):383–399, 1995.MATHMathSciNet S.L. Campbell and E. Moore. Constraint preserving integrators for general nonlinear higher index DAEs. Numer. Math., 69(4):383–399, 1995.MATHMathSciNet
[CP83]
go back to reference S.L. Campbell and L.R. Petzhold. Canonical forms and solvable singular systems of differential equations. SIAM J. Algebraic Discr. Meth., 4(4):517–521, 1983.MATH S.L. Campbell and L.R. Petzhold. Canonical forms and solvable singular systems of differential equations. SIAM J. Algebraic Discr. Meth., 4(4):517–521, 1983.MATH
[CSHD12]
go back to reference E. Cotilla-Sanchez, P. Hines, and C.M. Danforth. Predicting critical transitions from time series synchrophasor data. IEEE Trans. Smart Grid, 3(4):1832–1840, 2012. E. Cotilla-Sanchez, P. Hines, and C.M. Danforth. Predicting critical transitions from time series synchrophasor data. IEEE Trans. Smart Grid, 3(4):1832–1840, 2012.
[Dau92]
go back to reference I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[dBBCK08]
go back to reference M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences. Springer, 2008. M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences. Springer, 2008.
[DD91]
go back to reference F. Diener and M. Diener. Maximal delay. In E. Benoît, editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 71–86. Springer, 1991. F. Diener and M. Diener. Maximal delay. In E. Benoît, editor, Dynamic Bifurcations, volume 1493 of Lecture Notes in Mathematics, pages 71–86. Springer, 1991.
[DD95]
go back to reference F. Diener and M. Diener. Nonstandard Analysis in Practice. Springer, 1995. F. Diener and M. Diener. Nonstandard Analysis in Practice. Springer, 1995.
[DFD+10]
go back to reference R. Donangelo, H. Fort, V. Dakos, M. Scheffer, and E.H. Van Nes. Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bif. Chaos, 20(2):315–321, 2010. R. Donangelo, H. Fort, V. Dakos, M. Scheffer, and E.H. Van Nes. Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bif. Chaos, 20(2):315–321, 2010.
[DG10]
go back to reference J.M. Drake and B.D. Griffen. Early warning signals of extinction in deteriorating environments. Nature, 467:456–459, 2010. J.M. Drake and B.D. Griffen. Early warning signals of extinction in deteriorating environments. Nature, 467:456–459, 2010.
[DH11]
go back to reference A. Delshams and G. Huguet. A geometric mechanism of diffusion: rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equat., 250(5):2601–2623, 2011.MATHMathSciNet A. Delshams and G. Huguet. A geometric mechanism of diffusion: rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equat., 250(5):2601–2623, 2011.MATHMathSciNet
[Die84]
go back to reference M. Diener. The canard unchained or how fast/slow dynamical systems bifurcate. The Mathematical Intelligencer, 6:38–48, 1984.MATHMathSciNet M. Diener. The canard unchained or how fast/slow dynamical systems bifurcate. The Mathematical Intelligencer, 6:38–48, 1984.MATHMathSciNet
[DJ10]
go back to reference P.D. Ditlevsen and S.J. Johnsen. Tipping points: early warning and wishful thinking. Geophys. Res. Lett., 37:19703, 2010. P.D. Ditlevsen and S.J. Johnsen. Tipping points: early warning and wishful thinking. Geophys. Res. Lett., 37:19703, 2010.
[DJ11a]
go back to reference M. Desroches and M. Jeffrey. Canards and curvature: nonsmooth approximation by pinching. Nonlinearity, 24:1655, 2011.MATHMathSciNet M. Desroches and M. Jeffrey. Canards and curvature: nonsmooth approximation by pinching. Nonlinearity, 24:1655, 2011.MATHMathSciNet
[DKR+11]
go back to reference V. Dakos, S. Kéfi, M. Rietkerk, E.H. van Nes, and M. Scheffer. Slowing down in spatially patterned systems at the brink of collapse. Am. Nat., 177(6):153–166, 2011. V. Dakos, S. Kéfi, M. Rietkerk, E.H. van Nes, and M. Scheffer. Slowing down in spatially patterned systems at the brink of collapse. Am. Nat., 177(6):153–166, 2011.
[DL11]
go back to reference D. Dolgopyat and C. Liverani. Energy transfer in fast–slow Hamiltonian systems. Comm. Math. Phys., 308:201–225, 2011.MATHMathSciNet D. Dolgopyat and C. Liverani. Energy transfer in fast–slow Hamiltonian systems. Comm. Math. Phys., 308:201–225, 2011.MATHMathSciNet
[DSvN+08]
go back to reference V. Dakos, M. Scheffer, E.H. van Nes, V. Brovkin, V. Petoukhov, and H. Held. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA, 105(38):14308–14312, 2008. V. Dakos, M. Scheffer, E.H. van Nes, V. Brovkin, V. Petoukhov, and H. Held. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA, 105(38):14308–14312, 2008.
[DvND+09]
go back to reference V. Dakos, E.H. van Nes, R. Donangelo, H. Fort, and M. Scheffer. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol., 3(3):163–174, 2009. V. Dakos, E.H. van Nes, R. Donangelo, H. Fort, and M. Scheffer. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol., 3(3):163–174, 2009.
[EM07]
go back to reference W. E and P. Ming. Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Rat. Mech. Anal., 183(2):241–297, 2007. W. E and P. Ming. Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Rat. Mech. Anal., 183(2):241–297, 2007.
[Fri02b]
go back to reference E. Fridman. Singularly perturbed analysis of chattering in relay control systems. IEEE Trans. Aut. Contr., 47(12):2079–2084, 2002.MathSciNet E. Fridman. Singularly perturbed analysis of chattering in relay control systems. IEEE Trans. Aut. Contr., 47(12):2079–2084, 2002.MathSciNet
[FS80]
go back to reference N. Farber and J. Shinar. Approximate solution of singularly perturbed nonlinear pursuit-evasion games. J. Optim. Theor. Appl., 32:39–73, 1980.MATHMathSciNet N. Farber and J. Shinar. Approximate solution of singularly perturbed nonlinear pursuit-evasion games. J. Optim. Theor. Appl., 32:39–73, 1980.MATHMathSciNet
[Gar59]
go back to reference C.S. Gardner. Adiabatic invariants of periodic classical systems. Phys. Rev., 2(115):791–794, 1959. C.S. Gardner. Adiabatic invariants of periodic classical systems. Phys. Rev., 2(115):791–794, 1959.
[Ger12]
go back to reference M. Gerdts. Optimal control of ODEs and DAEs. de Gruyter, 2012. M. Gerdts. Optimal control of ODEs and DAEs. de Gruyter, 2012.
[GFZ11]
go back to reference I. Gholami, A. Fiege, and A. Zippelius. Slow dynamics and precursors of the glass transition in granular fluids. Phys. Rev. E, 84:031305, 2011. I. Gholami, A. Fiege, and A. Zippelius. Slow dynamics and precursors of the glass transition in granular fluids. Phys. Rev. E, 84:031305, 2011.
[GGM00]
go back to reference G. Gallavotti, G. Gentile, and V. Mastropietro. Hamilton-Jacobi equation, heteroclinic chains and Arnol’d diffusion in three time scale systems. Nonlinearity, 13(2):323, 2000. G. Gallavotti, G. Gentile, and V. Mastropietro. Hamilton-Jacobi equation, heteroclinic chains and Arnol’d diffusion in three time scale systems. Nonlinearity, 13(2):323, 2000.
[GJ08]
go back to reference V. Guttal and C. Jayaprakash. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11:450–460, 2008. V. Guttal and C. Jayaprakash. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11:450–460, 2008.
[GJ09]
go back to reference V. Guttal and C. Jayaprakash. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol., 2:3–12, 2009. V. Guttal and C. Jayaprakash. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol., 2:3–12, 2009.
[GK09a]
go back to reference J. Guckenheimer and C. Kuehn. Computing slow manifolds of saddle-type. SIAM J. Appl. Dyn. Syst., 8(3):854–879, 2009.MATHMathSciNet J. Guckenheimer and C. Kuehn. Computing slow manifolds of saddle-type. SIAM J. Appl. Dyn. Syst., 8(3):854–879, 2009.MATHMathSciNet
[GK09b]
go back to reference J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.MATHMathSciNet J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.MATHMathSciNet
[GK10b]
go back to reference J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.MATHMathSciNet J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.MATHMathSciNet
[GL02]
go back to reference V. Gelfreich and L. Lerman. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system. Nonlinearity, 15(2):447–457, 2002.MATHMathSciNet V. Gelfreich and L. Lerman. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system. Nonlinearity, 15(2):447–457, 2002.MATHMathSciNet
[GL03]
go back to reference V. Gelfreich and L. Lerman. Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system. Physica D, 176(3):125–146, 2003.MATHMathSciNet V. Gelfreich and L. Lerman. Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system. Physica D, 176(3):125–146, 2003.MATHMathSciNet
[GM08]
go back to reference B. Gershgorin and A. Majda. A nonlinear test model for filtering slow–fast systems. Commun. Math. Sci., 6(3):611–649, 2008.MATHMathSciNet B. Gershgorin and A. Majda. A nonlinear test model for filtering slow–fast systems. Commun. Math. Sci., 6(3):611–649, 2008.MATHMathSciNet
[GM10]
go back to reference B. Gershgorin and A. Majda. Filtering a nonlinear slow–fast system with strong fast forcing. Commun. Math. Sci., 8(1):67–92, 2010.MATHMathSciNet B. Gershgorin and A. Majda. Filtering a nonlinear slow–fast system with strong fast forcing. Commun. Math. Sci., 8(1):67–92, 2010.MATHMathSciNet
[Gol98]
go back to reference R. Goldblatt. Lectures on the Hyperreals. Springer, 1998. R. Goldblatt. Lectures on the Hyperreals. Springer, 1998.
[GP84]
go back to reference C.W. Gear and L.R. Petzhold. ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal., 21(4):716–728, 1984.MATHMathSciNet C.W. Gear and L.R. Petzhold. ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal., 21(4):716–728, 1984.MATHMathSciNet
[GRKT12]
go back to reference V. Gelfreich, V. Rom-Kedar, and D. Turaev. Fermi acceleration and adiabatic invariants for non-autonomous billiards. Chaos, 22(3):033116, 2012. V. Gelfreich, V. Rom-Kedar, and D. Turaev. Fermi acceleration and adiabatic invariants for non-autonomous billiards. Chaos, 22(3):033116, 2012.
[GS12b]
go back to reference M. Guardi and T.M. Seara. Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation. Nonlinearity, 25:1367–1412, 2012.MathSciNet M. Guardi and T.M. Seara. Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation. Nonlinearity, 25:1367–1412, 2012.MathSciNet
[GSW09]
go back to reference D. Givon, P. Stinis, and J. Weare. Variance reduction for particle filters of systems with time scale separation. IEEE Trans. Signal Proc., 57(2):424–435, 2009.MathSciNet D. Givon, P. Stinis, and J. Weare. Variance reduction for particle filters of systems with time scale separation. IEEE Trans. Signal Proc., 57(2):424–435, 2009.MathSciNet
[Hal95]
go back to reference G. Haller. Diffusion at intersecting resonances in Hamiltonian systems. Phys. Lett. A, 200(1):34–42, 1995.MATHMathSciNet G. Haller. Diffusion at intersecting resonances in Hamiltonian systems. Phys. Lett. A, 200(1):34–42, 1995.MATHMathSciNet
[Han95]
go back to reference M. Hanke. Regularizations of differential-algebraic equations revisited. Math. Nachr., 174:159–183, 1995.MATHMathSciNet M. Hanke. Regularizations of differential-algebraic equations revisited. Math. Nachr., 174:159–183, 1995.MATHMathSciNet
[Hen82]
go back to reference J. Henrard. Capture into resonance: an extension of the use of adiabatic invariants. Celest. Mech., 27(1):3–22, 1982.MATHMathSciNet J. Henrard. Capture into resonance: an extension of the use of adiabatic invariants. Celest. Mech., 27(1):3–22, 1982.MATHMathSciNet
[Hen93]
go back to reference J. Henrard. The adiabatic invariant in classical mechanics. In Dynamics Reported Vol. 2, pages 117–235. Springer, 1993. J. Henrard. The adiabatic invariant in classical mechanics. In Dynamics Reported Vol. 2, pages 117–235. Springer, 1993.
[HHvNS11]
go back to reference M. Hirota, M. Holmgren, E.H. van Nes, and M. Scheffer. Global resilience of tropical forest and savanna to critical transitions. Science, 334:232–235, 2011. M. Hirota, M. Holmgren, E.H. van Nes, and M. Scheffer. Global resilience of tropical forest and savanna to critical transitions. Science, 334:232–235, 2011.
[HW10]
go back to reference A. Hastings and D.B. Wysham. Regime shifts in ecological systems can occur with no warning. Ecol. Lett., 13:464–472, 2010. A. Hastings and D.B. Wysham. Regime shifts in ecological systems can occur with no warning. Ecol. Lett., 13:464–472, 2010.
[ILNV02]
go back to reference A.P. Itin, R. De La Llave, A.I. Neishtadt, and A.A. Vasiliev. Transport in a slowly perturbed convective cell flow. Chaos, 12(4):1043–1053, 2002.MATHMathSciNet A.P. Itin, R. De La Llave, A.I. Neishtadt, and A.A. Vasiliev. Transport in a slowly perturbed convective cell flow. Chaos, 12(4):1043–1053, 2002.MATHMathSciNet
[IN12]
go back to reference A.P. Itin and A.I. Neishtadt. Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances. Chaos, 22(2):026119, 2012. A.P. Itin and A.I. Neishtadt. Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances. Chaos, 22(2):026119, 2012.
[IVKS07]
go back to reference A.P. Itin, A.A. Vasiliev, G. Krishna, and S.Watanabe. Change in the adiabatic invariant in a nonlinear two-mode model of Feshbach resonance passage. Physica D, 232:108–115, 2007.MATH A.P. Itin, A.A. Vasiliev, G. Krishna, and S.Watanabe. Change in the adiabatic invariant in a nonlinear two-mode model of Feshbach resonance passage. Physica D, 232:108–115, 2007.MATH
[JCdBS10]
go back to reference M.R. Jeffrey, A.R. Champneys, M. di Bernardo, and S.W. Shaw. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Phys. Rev. E, 81:016213, 2010. M.R. Jeffrey, A.R. Champneys, M. di Bernardo, and S.W. Shaw. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Phys. Rev. E, 81:016213, 2010.
[Jon95]
go back to reference C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995. C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.
[KG11]
go back to reference P. Kowalczyk and P. Glendinning. Boundary-equilibrium bifurcations in piecewise-smooth slow–fast systems. Chaos, 21: 023126, 2011.MathSciNet P. Kowalczyk and P. Glendinning. Boundary-equilibrium bifurcations in piecewise-smooth slow–fast systems. Chaos, 21: 023126, 2011.MathSciNet
[KG13]
go back to reference C. Kuehn and T. Gross. Nonlocal generalized models of predator–prey systems. Discr. Cont. Dyn. Syst. B, 18(3): 693–720, 2013.MATHMathSciNet C. Kuehn and T. Gross. Nonlocal generalized models of predator–prey systems. Discr. Cont. Dyn. Syst. B, 18(3): 693–720, 2013.MATHMathSciNet
[KM94]
go back to reference P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable coefficients. J. Comput. Appl. Math., 56(3):225–251, 1994.MATHMathSciNet P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable coefficients. J. Comput. Appl. Math., 56(3):225–251, 1994.MATHMathSciNet
[KM98]
go back to reference P. Kunkel and V. Mehrmann. Regular solutions of nonlinear differential-algebraic equations and their numerical determination. Numer. Math., 79(4):581–600, 1998.MATHMathSciNet P. Kunkel and V. Mehrmann. Regular solutions of nonlinear differential-algebraic equations and their numerical determination. Numer. Math., 79(4):581–600, 1998.MATHMathSciNet
[KM06b]
go back to reference P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. European Mathematical Society, 2006. P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. European Mathematical Society, 2006.
[KMR14]
go back to reference C. Kuehn, E.A. Martens, and D. Romero. Critical transitions in social network activity. J. Complex Networks, 2(2):141–152, 2014. see also arXiv:1307.8250. C. Kuehn, E.A. Martens, and D. Romero. Critical transitions in social network activity. J. Complex Networks, 2(2):141–152, 2014. see also arXiv:1307.8250.
[Kno92]
go back to reference M. Knorrenschild. Differential/algebraic equations as stiff ordinary differential equations. SIAM J. Numer. Anal., 29(6):1694–1715, 1992.MATHMathSciNet M. Knorrenschild. Differential/algebraic equations as stiff ordinary differential equations. SIAM J. Numer. Anal., 29(6):1694–1715, 1992.MATHMathSciNet
[KO96]
go back to reference L.V. Kalachev and R.E. O’Malley. The regularization of linear differential-algebraic equations. SIAM J. Math. Anal., 27(1):258–273, 1996.MATHMathSciNet L.V. Kalachev and R.E. O’Malley. The regularization of linear differential-algebraic equations. SIAM J. Math. Anal., 27(1):258–273, 1996.MATHMathSciNet
[Kon09]
go back to reference L.I. Kononenko. Relaxation oscillations and canard solutions in singular systems on a plane. J. Appl. Ind. Math., 4(2):194–199, 2009.MathSciNet L.I. Kononenko. Relaxation oscillations and canard solutions in singular systems on a plane. J. Appl. Ind. Math., 4(2):194–199, 2009.MathSciNet
[KP89]
go back to reference M.A. Krasnosel’skii and A.V. Pokrovskii. Systems with Hysteresis. Springer, 1989. M.A. Krasnosel’skii and A.V. Pokrovskii. Systems with Hysteresis. Springer, 1989.
[KRA+07]
go back to reference S. Kéfi, M. Rietkerk, C.L. Alados, Y. Peyo, V.P. Papanastasis, A. El Aich, and P.C. de Ruiter. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449:213–217, 2007. S. Kéfi, M. Rietkerk, C.L. Alados, Y. Peyo, V.P. Papanastasis, A. El Aich, and P.C. de Ruiter. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449:213–217, 2007.
[Kre96]
go back to reference P. Krejčí. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1996.MATH P. Krejčí. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1996.MATH
[Kre05]
go back to reference P. Krejčí. Hysteresis, convexity and dissipation in hyperbolic equations. J. Phys.: Conf. Ser., 22(1):103–123, 2005. P. Krejčí. Hysteresis, convexity and dissipation in hyperbolic equations. J. Phys.: Conf. Ser., 22(1):103–123, 2005.
[KSG13]
go back to reference C. Kuehn, S. Siegmund, and T. Gross. On the analysis of evolution equations via generalized models. IMA J. Appl. Math., 78(5):1051–1077, 2013.MATHMathSciNet C. Kuehn, S. Siegmund, and T. Gross. On the analysis of evolution equations via generalized models. IMA J. Appl. Math., 78(5):1051–1077, 2013.MATHMathSciNet
[KSS97]
go back to reference M. Krupa, B. Sandstede, and P. Szmolyan. Fast and slow waves in the FitzHugh–Nagumo equation. J. Differential Equat., 133:49–97, 1997.MATHMathSciNet M. Krupa, B. Sandstede, and P. Szmolyan. Fast and slow waves in the FitzHugh–Nagumo equation. J. Differential Equat., 133:49–97, 1997.MATHMathSciNet
[Kue09]
go back to reference C. Kuehn. Scaling of saddle-node bifurcations: degeneracies and rapid quantitative changes. J. Phys. A: Math. and Theor., 42(4):045101, 2009. C. Kuehn. Scaling of saddle-node bifurcations: degeneracies and rapid quantitative changes. J. Phys. A: Math. and Theor., 42(4):045101, 2009.
[Kue11a]
go back to reference C. Kuehn. A mathematical framework for critical transitions: bifurcations, fast–slow systems and stochastic dynamics. Physica D, 240(12):1020–1035, 2011.MATH C. Kuehn. A mathematical framework for critical transitions: bifurcations, fast–slow systems and stochastic dynamics. Physica D, 240(12):1020–1035, 2011.MATH
[Kue13a]
go back to reference C. Kuehn. A mathematical framework for critical transitions: normal forms, variance and applications. J. Nonlinear Sci., 23(3):457–510, 2013.MATHMathSciNet C. Kuehn. A mathematical framework for critical transitions: normal forms, variance and applications. J. Nonlinear Sci., 23(3):457–510, 2013.MATHMathSciNet
[Kue13b]
go back to reference C. Kuehn. Warning signs for wave speed transitions of noisy Fisher-KPP invasion fronts. Theor. Ecol., 6(3):295–308, 2013. C. Kuehn. Warning signs for wave speed transitions of noisy Fisher-KPP invasion fronts. Theor. Ecol., 6(3):295–308, 2013.
[Kuz04]
go back to reference Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.MATH Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.MATH
[KW91]
go back to reference T.J. Kaper and S. Wiggins. Lobe area in adiabatic Hamiltonian systems. Physica D, 51(1):205–212, 1991.MATHMathSciNet T.J. Kaper and S. Wiggins. Lobe area in adiabatic Hamiltonian systems. Physica D, 51(1):205–212, 1991.MATHMathSciNet
[LdST07]
go back to reference J. Llibre, P.R. da Silva, and M.A. Teixeira. Regularization of discontinuous vector fields on via singular perturbation. J. Dyn. Diff. Eq., 19(2):309–331, 2007.MATH J. Llibre, P.R. da Silva, and M.A. Teixeira. Regularization of discontinuous vector fields on via singular perturbation. J. Dyn. Diff. Eq., 19(2):309–331, 2007.MATH
[LdST08]
go back to reference J. Llibre, P.R. da Silva, and M.A. Teixeira. Sliding vector fields via slow–fast systems. Bull. Belg. Math. Soc., 15(5):851–869, 2008.MATHMathSciNet J. Llibre, P.R. da Silva, and M.A. Teixeira. Sliding vector fields via slow–fast systems. Bull. Belg. Math. Soc., 15(5):851–869, 2008.MATHMathSciNet
[LdST09]
go back to reference J. Llibre, P.R. da Silva, and M.A. Teixeira. Study of singularities in nonsmooth dynamical systems via singular perturbation. SIAM J. Appl. Dyn. Syst., 8(1):508–526, 2009.MATHMathSciNet J. Llibre, P.R. da Silva, and M.A. Teixeira. Study of singularities in nonsmooth dynamical systems via singular perturbation. SIAM J. Appl. Dyn. Syst., 8(1):508–526, 2009.MATHMathSciNet
[Lee06]
go back to reference J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006. J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.
[LG05]
go back to reference L. Lerman and V. Gelfreich. Fast-slow Hamiltonian dynamics near a ghost separatrix loop. J. Math. Sci., 126:1445–1466, 2005.MATHMathSciNet L. Lerman and V. Gelfreich. Fast-slow Hamiltonian dynamics near a ghost separatrix loop. J. Math. Sci., 126:1445–1466, 2005.MATHMathSciNet
[LG12]
go back to reference S.J. Lade and T. Gross. Early warning signals for critical transitions: a generalized modeling approach. PLoS Comp. Biol., 8:e1002360–6, 2012. S.J. Lade and T. Gross. Early warning signals for critical transitions: a generalized modeling approach. PLoS Comp. Biol., 8:e1002360–6, 2012.
[LHK+08]
go back to reference T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105(6):1786–1793, 2008.MATH T.M. Lenton, H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105(6):1786–1793, 2008.MATH
[LK85b]
go back to reference D. Luse and H. Khalil. Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Aut. Contr., 30(12):1171–1179, 1985.MATHMathSciNet D. Luse and H. Khalil. Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Aut. Contr., 30(12):1171–1179, 1985.MATHMathSciNet
[LL07]
go back to reference V.N. Livina and T.M. Lenton. A modified method for detecting incipient bifurcations in a dynamical system. Geophysical Research Letters, 34:L03712, 2007. V.N. Livina and T.M. Lenton. A modified method for detecting incipient bifurcations in a dynamical system. Geophysical Research Letters, 34:L03712, 2007.
[LMT13]
go back to reference R. Lamour, R. März, and C. Tischendorf. Differential-Algebraic Equations: A Projector Based Analysis. Springer, 2013. R. Lamour, R. März, and C. Tischendorf. Differential-Algebraic Equations: A Projector Based Analysis. Springer, 2013.
[LN04]
go back to reference R.I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, 2004. R.I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, 2004.
[LST98]
go back to reference C. Lobry, T. Sari, and S. Touhami. On Tykhonov’s theorem for convergence of solutions of slow and fast systems. Electron. J. Differential Equat., 19:1–22, 1998.MathSciNet C. Lobry, T. Sari, and S. Touhami. On Tykhonov’s theorem for convergence of solutions of slow and fast systems. Electron. J. Differential Equat., 19:1–22, 1998.MathSciNet
[MAEL07]
go back to reference F. Mormann, R.G. Andrzejak, C.E. Elger, and K. Lehnertz. Seizure prediction: the long and winding road. Brain, 130:314–333, 2007. F. Mormann, R.G. Andrzejak, C.E. Elger, and K. Lehnertz. Seizure prediction: the long and winding road. Brain, 130:314–333, 2007.
[May03]
go back to reference I.D. Mayergoyz. Mathematical Models of Hysteresis and their Applications. Academic Press, 2003. I.D. Mayergoyz. Mathematical Models of Hysteresis and their Applications. Academic Press, 2003.
[Mea05]
go back to reference K.D. Mease. Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling. Appl. Math. Comput., 164(2):627–648, 2005.MATHMathSciNet K.D. Mease. Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling. Appl. Math. Comput., 164(2):627–648, 2005.MATHMathSciNet
[MEvdD13]
go back to reference A. Machina, R. Edwards, and P. van den Driessche. Singular dynamics in gene network models. SIAM J. Appl. Dyn. Syst., 12(1):95–125, 2013.MATHMathSciNet A. Machina, R. Edwards, and P. van den Driessche. Singular dynamics in gene network models. SIAM J. Appl. Dyn. Syst., 12(1):95–125, 2013.MATHMathSciNet
[MG12]
go back to reference L. Mitchell and G.A. Gottwald. On finite-size Lyapunov exponents in multiscale systems. Chaos, 22(2):023115, 2012. L. Mitchell and G.A. Gottwald. On finite-size Lyapunov exponents in multiscale systems. Chaos, 22(2):023115, 2012.
[MK12b]
go back to reference C. Meisel and C. Kuehn. On spatial and temporal multilevel dynamics and scaling effects in epileptic seizures. PLoS ONE, 7(2):e30371, 2012. C. Meisel and C. Kuehn. On spatial and temporal multilevel dynamics and scaling effects in epileptic seizures. PLoS ONE, 7(2):e30371, 2012.
[MLS08]
go back to reference R. May, S.A. Levin, and G. Sugihara. Ecology for bankers. Nature, 451:893–895, 2008. R. May, S.A. Levin, and G. Sugihara. Ecology for bankers. Nature, 451:893–895, 2008.
[MOPS05]
go back to reference M.P. Mortell, R.E. O’Malley, A. Pokrovskii, and V. Sobolev. Singular Perturbations and Hysteresis. SIAM, 2005. M.P. Mortell, R.E. O’Malley, A. Pokrovskii, and V. Sobolev. Singular Perturbations and Hysteresis. SIAM, 2005.
[MST03]
go back to reference P.E. McSharry, L.A. Smith, and L. Tarassenko. Prediction of epileptic seizures. Nature Med., 9: 241–242, 2003. P.E. McSharry, L.A. Smith, and L. Tarassenko. Prediction of epileptic seizures. Nature Med., 9: 241–242, 2003.
[MTA08]
go back to reference K.D. Mease, U. Topcu, and E. Aykutlug. Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and vectors. arXiv:0807.0239v1, pages 1–38, 2008. K.D. Mease, U. Topcu, and E. Aykutlug. Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and vectors. arXiv:0807.0239v1, pages 1–38, 2008.
[NA12]
go back to reference A.I. Neishtadt and A.V. Artemyev. Destruction of adiabatic invariance for billiards in a strong nonuniform magnetic field. Phys. Rev. Lett., 108:064102, 2012. A.I. Neishtadt and A.V. Artemyev. Destruction of adiabatic invariance for billiards in a strong nonuniform magnetic field. Phys. Rev. Lett., 108:064102, 2012.
[Nei76]
go back to reference A.I. Neishtadt. Passage through a separatrix in a resonance problem with a slowly-varying parameter. J. Appl. Math. Mech., 39(4):594–605, 1976.MathSciNet A.I. Neishtadt. Passage through a separatrix in a resonance problem with a slowly-varying parameter. J. Appl. Math. Mech., 39(4):594–605, 1976.MathSciNet
[Nei81]
go back to reference A.I. Neishtadt. On the accuracy of conservation of the adiabatic invariant. J. Appl. Math. Mech., 45(1):58–63, 1981.MathSciNet A.I. Neishtadt. On the accuracy of conservation of the adiabatic invariant. J. Appl. Math. Mech., 45(1):58–63, 1981.MathSciNet
[Nei87a]
go back to reference A.I. Neishtadt. On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. J. Appl. Math. Mech., 51(5):586–592, 1987.MathSciNet A.I. Neishtadt. On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. J. Appl. Math. Mech., 51(5):586–592, 1987.MathSciNet
[Nei91]
[Nei00]
go back to reference A.I. Neishtadt. On the accuracy of persistence of adiabatic invariant in single-frequency systems. Reg. Chaotic. Dyn., 5(2):213–218, 2000.MATHMathSciNet A.I. Neishtadt. On the accuracy of persistence of adiabatic invariant in single-frequency systems. Reg. Chaotic. Dyn., 5(2):213–218, 2000.MATHMathSciNet
[Net68]
go back to reference A.V. Netushil. Nonlinear element of stop type. Avtomat. Telemech., 7:175–179, 1968. (in Russian). A.V. Netushil. Nonlinear element of stop type. Avtomat. Telemech., 7:175–179, 1968. (in Russian).
[Net70]
go back to reference A.V. Netushil. Self-oscillations in systems with negative hysteresis. In Proc. 5th International Conference on Nonlinear Oscillations, volume 4, pages 393–396. Izdanie Inst. Mat. Akad. Nauk Ukrain., 1970. (in Russian). A.V. Netushil. Self-oscillations in systems with negative hysteresis. In Proc. 5th International Conference on Nonlinear Oscillations, volume 4, pages 393–396. Izdanie Inst. Mat. Akad. Nauk Ukrain., 1970. (in Russian).
[NS12]
go back to reference A.I. Neishtadt and T. Su. On phenomenon of scattering on resonances associated with discretisation of systems with fast rotating phase. Regular & Chaotic Dyn., 17(3):359–366, 2012.MATHMathSciNet A.I. Neishtadt and T. Su. On phenomenon of scattering on resonances associated with discretisation of systems with fast rotating phase. Regular & Chaotic Dyn., 17(3):359–366, 2012.MATHMathSciNet
[NS13a]
go back to reference A.I. Neishtadt and T. Su. On asymptotic description of passage through a resonance in quasilinear Hamiltonian systems. SIAM J. Appl. Dyn. Syst., 12(3):1436–1473, 2013.MATHMathSciNet A.I. Neishtadt and T. Su. On asymptotic description of passage through a resonance in quasilinear Hamiltonian systems. SIAM J. Appl. Dyn. Syst., 12(3):1436–1473, 2013.MATHMathSciNet
[NST97]
go back to reference A.I. Neishtadt, V.V. Sidorenko, and D.V. Treschev. Stable periodic motions in the problem on passage through a separatrix. Chaos, 7(1):2–11, 1997.MATHMathSciNet A.I. Neishtadt, V.V. Sidorenko, and D.V. Treschev. Stable periodic motions in the problem on passage through a separatrix. Chaos, 7(1):2–11, 1997.MATHMathSciNet
[NSTV08]
go back to reference A. Neishtadt, C. Simo, D.V. Treschev, and A. Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow–fast systems. Discr. Contin. Dyn. Syst. B, 10(2):621–650, 2008.MATHMathSciNet A. Neishtadt, C. Simo, D.V. Treschev, and A. Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow–fast systems. Discr. Contin. Dyn. Syst. B, 10(2):621–650, 2008.MATHMathSciNet
[NV99]
go back to reference A.I. Neishtadt and A.A. Vasiliev. Change of the adiabatic invariant at a separatrix in a volume-preserving 3D system. Nonlinearity, 12(2):303, 1999. A.I. Neishtadt and A.A. Vasiliev. Change of the adiabatic invariant at a separatrix in a volume-preserving 3D system. Nonlinearity, 12(2):303, 1999.
[NV05]
go back to reference A.I. Neishtadt and A.A. Vasiliev. Phase change between separatrix crossings in slow–fast Hamiltonian systems. Nonlinearity, 18(3):1393–1406, 2005.MATHMathSciNet A.I. Neishtadt and A.A. Vasiliev. Phase change between separatrix crossings in slow–fast Hamiltonian systems. Nonlinearity, 18(3):1393–1406, 2005.MATHMathSciNet
[NV06]
go back to reference A.I. Neishtadt and A.A. Vasiliev. Destruction of adiabatic invariance at resonances in slow–fast Hamiltonian systems. Nucl. Instr. Meth. Phys. Res. A, 561:158–165, 2006. A.I. Neishtadt and A.A. Vasiliev. Destruction of adiabatic invariance at resonances in slow–fast Hamiltonian systems. Nucl. Instr. Meth. Phys. Res. A, 561:158–165, 2006.
[OK94]
go back to reference R.E. O’Malley and L.V. Kalachev. Regularization of nonlinear differential-algebraic equations. SIAM J. Math. Anal., 25(2):615–629, 1994.MATHMathSciNet R.E. O’Malley and L.V. Kalachev. Regularization of nonlinear differential-algebraic equations. SIAM J. Math. Anal., 25(2):615–629, 1994.MATHMathSciNet
[OK96]
go back to reference R.E. O’Malley and L.V. Kalachev. The regularization of linear differential-algebraic equations. SIAM J. Math. Anal., 27(1):258–273, 1996.MATHMathSciNet R.E. O’Malley and L.V. Kalachev. The regularization of linear differential-algebraic equations. SIAM J. Math. Anal., 27(1):258–273, 1996.MATHMathSciNet
[Pro03]
go back to reference M. Procesi. Exponentially small splitting and Arnold diffusion for multiple time scale systems. Rev. Math. Phys., 15(4):339–386, 2003.MATHMathSciNet M. Procesi. Exponentially small splitting and Arnold diffusion for multiple time scale systems. Rev. Math. Phys., 15(4):339–386, 2003.MATHMathSciNet
[PW00]
go back to reference D.B. Percival and A.T. Walden. Wavelet Methods for Time Series Analysis. CUP, 2000. D.B. Percival and A.T. Walden. Wavelet Methods for Time Series Analysis. CUP, 2000.
[RCG12]
go back to reference H.G. Rotstein, S. Coombes, and A.M. Gheorghe. Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh–Nagumo type. SIAM J. Appl. Dyn. Syst., 11(1): 135–180, 2012.MATHMathSciNet H.G. Rotstein, S. Coombes, and A.M. Gheorghe. Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh–Nagumo type. SIAM J. Appl. Dyn. Syst., 11(1): 135–180, 2012.MATHMathSciNet
[RDdRvdK04]
go back to reference M. Rietkerk, S.C. Dekker, P. de Ruiter, and J. van de Koppel. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305(2):1926–1929, 2004. M. Rietkerk, S.C. Dekker, P. de Ruiter, and J. van de Koppel. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305(2):1926–1929, 2004.
[Rei00]
go back to reference S. Reich. Smoothed Langevin dynamics of highly oscillatory systems. Physica D, 138:210–224, 2000.MATHMathSciNet S. Reich. Smoothed Langevin dynamics of highly oscillatory systems. Physica D, 138:210–224, 2000.MATHMathSciNet
[Ria08]
go back to reference R. Riaza. Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, 2008. R. Riaza. Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, 2008.
[Ric11]
go back to reference M.P. Richardson. New observations may inform seizure models: very fast and very slow oscillations. Prog. Biophys. Molec. Biol., 105:5–13, 2011. M.P. Richardson. New observations may inform seizure models: very fast and very slow oscillations. Prog. Biophys. Molec. Biol., 105:5–13, 2011.
[RJM95]
go back to reference J. Rubin, C.K.R.T. Jones, and M. Maxey. Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Sci., 5:337–358, 1995.MATHMathSciNet J. Rubin, C.K.R.T. Jones, and M. Maxey. Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Sci., 5:337–358, 1995.MATHMathSciNet
[RR00]
go back to reference P.J. Rabier and W.C. Rheinboldt. Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, 2000. P.J. Rabier and W.C. Rheinboldt. Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, 2000.
[RT12]
go back to reference J.E. Rubin and D. Terman. Explicit maps to predict activation order in multi-phase rhythms of a coupled cell network. J. Math. Neurosci., 2:4, 2012.MathSciNet J.E. Rubin and D. Terman. Explicit maps to predict activation order in multi-phase rhythms of a coupled cell network. J. Math. Neurosci., 2:4, 2012.MathSciNet
[SBB+09]
go back to reference M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkhin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, and G. Sugihara. Early-warning signals for critical transitions. Nature, 461:53–59, 2009. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkhin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, and G. Sugihara. Early-warning signals for critical transitions. Nature, 461:53–59, 2009.
[SC03]
go back to reference M. Scheffer and S.R. Carpenter. Catastrophic regime shifts in ecosystems: linking theory to observation. TRENDS in Ecol. and Evol., 18(12):648–656, 2003. M. Scheffer and S.R. Carpenter. Catastrophic regime shifts in ecosystems: linking theory to observation. TRENDS in Ecol. and Evol., 18(12):648–656, 2003.
[SCF+01]
go back to reference M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, and B. Walker. Catastrophic shifts in ecosystems. Nature, 413:591–596, 2001. M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, and B. Walker. Catastrophic shifts in ecosystems. Nature, 413:591–596, 2001.
[Sch09a]
go back to reference M. Scheffer. Critical Transitions in Nature and Society. Princeton University Press, 2009. M. Scheffer. Critical Transitions in Nature and Society. Princeton University Press, 2009.
[SF84]
go back to reference J. Shinar and N. Farber. Horizontal variable-speed interception game solved by forced singular perturbation technique. J. Optim. Theor. Appl., 42(4):603–636, 1984.MATHMathSciNet J. Shinar and N. Farber. Horizontal variable-speed interception game solved by forced singular perturbation technique. J. Optim. Theor. Appl., 42(4):603–636, 1984.MATHMathSciNet
[SJLS05]
go back to reference S.N. Simic, K.H. Johansson, J. Lygeros, and S. Sastry. Towards a geometric theory of hybrid systems. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 12(5):649–687, 2005.MATHMathSciNet S.N. Simic, K.H. Johansson, J. Lygeros, and S. Sastry. Towards a geometric theory of hybrid systems. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 12(5):649–687, 2005.MATHMathSciNet
[SK10]
go back to reference J. Sieber and P. Kowalczyk. Small-scale instabilities in dynamical systems with sliding. Physica D, 239(1):44–57, 2010.MATHMathSciNet J. Sieber and P. Kowalczyk. Small-scale instabilities in dynamical systems with sliding. Physica D, 239(1):44–57, 2010.MATHMathSciNet
[SL13]
go back to reference A. Ture Savadkoohi and C.-H. Lamarque. Dynamics of coupled Dahl-type and nonsmooth systems at different scales of time. Int. J. Bif. Chaos, 23(7):1350114, 2013. A. Ture Savadkoohi and C.-H. Lamarque. Dynamics of coupled Dahl-type and nonsmooth systems at different scales of time. Int. J. Bif. Chaos, 23(7):1350114, 2013.
[SS10]
go back to reference S. Schecter and C. Sourdis. Heteroclinic orbits in slow–fast Hamiltonian systems with slow manifold bifurcations. J. Dyn. Diff. Equat., 22:629–655, 2010.MATHMathSciNet S. Schecter and C. Sourdis. Heteroclinic orbits in slow–fast Hamiltonian systems with slow manifold bifurcations. J. Dyn. Diff. Equat., 22:629–655, 2010.MATHMathSciNet
[ST96]
go back to reference J. Sotomayor and M.A. Teixeira. Regularization of discontinuous vector fields. In International Conference on Differential Equations (Lisboa), pages 207–223. World Scientific, 1996. J. Sotomayor and M.A. Teixeira. Regularization of discontinuous vector fields. In International Conference on Differential Equations (Lisboa), pages 207–223. World Scientific, 1996.
[Sto49]
go back to reference H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8: 24–29, 1949. H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8: 24–29, 1949.
[Sto61]
go back to reference H. Stommel. Thermohaline convection with two stable regimes of flow. Tellus, 13:224–230, 1961. H. Stommel. Thermohaline convection with two stable regimes of flow. Tellus, 13:224–230, 1961.
[Su12]
go back to reference T. Su. On the accuracy of conservation of adiabatic invariants in slow–fast Hamiltonian systems. Reg. Chaotic Dyn., 17(1):54–62, 2012.MATH T. Su. On the accuracy of conservation of adiabatic invariants in slow–fast Hamiltonian systems. Reg. Chaotic Dyn., 17(1):54–62, 2012.MATH
[SY04]
go back to reference T. Sari and K. Yadi. On Pontryagin–Rodygin’s theorem for convergence of solutions of slow and fast systems. Electron. J. Differential Equat., 139:1–17, 2004.MathSciNet T. Sari and K. Yadi. On Pontryagin–Rodygin’s theorem for convergence of solutions of slow and fast systems. Electron. J. Differential Equat., 139:1–17, 2004.MathSciNet
[SZ02]
go back to reference J. Shatah and C. Zeng. Periodic solutions for Hamiltonian systems under strong constraining forces. J. Differential Equat., 186(2):572–585, 2002.MATHMathSciNet J. Shatah and C. Zeng. Periodic solutions for Hamiltonian systems under strong constraining forces. J. Differential Equat., 186(2):572–585, 2002.MATHMathSciNet
[Tak76]
go back to reference F. Takens. Constrained equations; a study of implicit differential equations and their discontinuous solutions. In P. Hilton, editor, Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, volume 525 of Lecture Notes in Mathematics, pages 143–234. Springer, 1976. F. Takens. Constrained equations; a study of implicit differential equations and their discontinuous solutions. In P. Hilton, editor, Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, volume 525 of Lecture Notes in Mathematics, pages 143–234. Springer, 1976.
[TB91a]
go back to reference M. Tuckerman and B.J. Berne. Stochastic molecular dynamics in systems with multiple time scales and memory friction. J. Chem. Phys., 95:4389, 1991. M. Tuckerman and B.J. Berne. Stochastic molecular dynamics in systems with multiple time scales and memory friction. J. Chem. Phys., 95:4389, 1991.
[TB91b]
go back to reference M. Tuckerman and B.J. Berne. Molecular dynamics in systems with multiple time scales: systems with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys., 95:8362, 1991. M. Tuckerman and B.J. Berne. Molecular dynamics in systems with multiple time scales: systems with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys., 95:8362, 1991.
[TBM91]
go back to reference M. Tuckerman, B.J. Berne, and G.J. Martyna. Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys., 94:6811, 1991. M. Tuckerman, B.J. Berne, and G.J. Martyna. Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys., 94:6811, 1991.
[TBM94]
go back to reference M. Tuckerman, B.J. Berne, and G.J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97(3):1990–2001, 1994. M. Tuckerman, B.J. Berne, and G.J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97(3):1990–2001, 1994.
[TBR91]
go back to reference M. Tuckerman, B.J. Berne, and A. Rossi. Molecular dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys., 94:1465, 1991. M. Tuckerman, B.J. Berne, and A. Rossi. Molecular dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys., 94:1465, 1991.
[TCE86]
go back to reference J.L. Tennyson, J.R. Cary, and D.F. Escande. Change of the adiabatic invariant due to separatrix crossing. Phys. Rev. Lett., 56(20):2117–2120, 1986.MathSciNet J.L. Tennyson, J.R. Cary, and D.F. Escande. Change of the adiabatic invariant due to separatrix crossing. Phys. Rev. Lett., 56(20):2117–2120, 1986.MathSciNet
[TdC11]
go back to reference D.J. Tonon and T. de Carvalho. Generic bifurcations of planar Filippov systems via geometric singular perturbations. Bull. Belg. Math. Soc., 18(5):861–881, 2011.MATHMathSciNet D.J. Tonon and T. de Carvalho. Generic bifurcations of planar Filippov systems via geometric singular perturbations. Bull. Belg. Math. Soc., 18(5):861–881, 2011.MATHMathSciNet
[TdS12]
go back to reference M.A. Teixeira and P.R. da Silva. Regularization and singular perturbation techniques for non-smooth systems. Physica D, 241(22):1948–1955, 2012.MathSciNet M.A. Teixeira and P.R. da Silva. Regularization and singular perturbation techniques for non-smooth systems. Physica D, 241(22):1948–1955, 2012.MathSciNet
[TMB90]
go back to reference M. Tuckerman, G.J. Martyna, and B.J. Berne. Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys., 93:1287, 1990. M. Tuckerman, G.J. Martyna, and B.J. Berne. Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys., 93:1287, 1990.
[TOM10]
go back to reference M. Tao, H. Owhadi, and J.E. Marsden. Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8(4):1269–1324, 2010.MATHMathSciNet M. Tao, H. Owhadi, and J.E. Marsden. Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8(4):1269–1324, 2010.MATHMathSciNet
[TOM11]
go back to reference M. Tao, H. Owhadi, and J.E. Marsden. From efficient symplectic exponentiation of matrices to symplectic integration of high-dimensional Hamiltonian systems with slowly varying quadratic stiff potentials. Appl. Math. Res. Express, 2:242–280, 2011.MathSciNet M. Tao, H. Owhadi, and J.E. Marsden. From efficient symplectic exponentiation of matrices to symplectic integration of high-dimensional Hamiltonian systems with slowly varying quadratic stiff potentials. Appl. Math. Res. Express, 2:242–280, 2011.MathSciNet
[TOP96]
go back to reference E.B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids. Phil. Mag., 73(6):1529–1563, 1996. E.B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids. Phil. Mag., 73(6):1529–1563, 1996.
[TP94a]
go back to reference M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. I. Basic integration techniques. J. Chem. Phys., 101:1302–1315, 1994. M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. I. Basic integration techniques. J. Chem. Phys., 101:1302–1315, 1994.
[TP94b]
go back to reference M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. II. Multiple time scale techniques. J. Chem. Phys., 101:1316–1329, 1994. M.E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. II. Multiple time scale techniques. J. Chem. Phys., 101:1316–1329, 1994.
[Tre04]
go back to reference D. Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 17(5):1803, 2004. D. Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 17(5):1803, 2004.
[TS10]
go back to reference J.M.T. Thompson and J. Sieber. Predicting climate tipping points. In B. Launder and M. Thompson, editors, Geo-Engineering Climate Change: Environmental Necessity or Pandora’s Box, pages 50–83. CUP, 2010. J.M.T. Thompson and J. Sieber. Predicting climate tipping points. In B. Launder and M. Thompson, editors, Geo-Engineering Climate Change: Environmental Necessity or Pandora’s Box, pages 50–83. CUP, 2010.
[TS11a]
go back to reference J.M.T. Thompson and J. Sieber. Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math., 76(1):27–46, 2011.MATHMathSciNet J.M.T. Thompson and J. Sieber. Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math., 76(1):27–46, 2011.MATHMathSciNet
[TS11b]
go back to reference J.M.T. Thompson and J. Sieber. Predicting climate tipping as a noisy bifurcation: a review. Int. J. Bif. Chaos, 21(2):399–423, 2011.MATHMathSciNet J.M.T. Thompson and J. Sieber. Predicting climate tipping as a noisy bifurcation: a review. Int. J. Bif. Chaos, 21(2):399–423, 2011.MATHMathSciNet
[TZKS12]
go back to reference J.-C. Tsai, W. Zhang, V. Kirk, and J. Sneyd. Traveling waves in a simplified model of calcium dynamics. SIAM J. Appl. Dyn. Syst., 11(4):1149–1199, 2012.MATHMathSciNet J.-C. Tsai, W. Zhang, V. Kirk, and J. Sneyd. Traveling waves in a simplified model of calcium dynamics. SIAM J. Appl. Dyn. Syst., 11(4):1149–1199, 2012.MATHMathSciNet
[vdB87]
go back to reference I. van den Berg. Nonstandard Asymptotic Analysis, volume 1249 of Lecture Notes in Mathematics. Springer, 1987. I. van den Berg. Nonstandard Asymptotic Analysis, volume 1249 of Lecture Notes in Mathematics. Springer, 1987.
[VFD+12]
go back to reference A.J. Veraart, E.J. Faassen, V. Dakos, E.H. van Nes, M. Lurling, and M. Scheffer. Recovery rates reflect distance to a tipping point in a living system. Nature, 481:357–359, 2012. A.J. Veraart, E.J. Faassen, V. Dakos, E.H. van Nes, M. Lurling, and M. Scheffer. Recovery rates reflect distance to a tipping point in a living system. Nature, 481:357–359, 2012.
[VGVC07]
go back to reference M. Venkadesan, J. Guckenheimer, and F.J. Valero-Cuevas. Manipulating the edge of instability. J. Biomech., 40:1653–1661, 2007. M. Venkadesan, J. Guckenheimer, and F.J. Valero-Cuevas. Manipulating the edge of instability. J. Biomech., 40:1653–1661, 2007.
[Vis94]
go back to reference A. Visintin. Differential Models of Hysteresis. Springer, 1994. A. Visintin. Differential Models of Hysteresis. Springer, 1994.
[VNAZ12]
go back to reference A. Vasiliev, A. Neishtadt, A. Artemyev, and L. Zelenyi. Jump of the adiabatic invariant at a separatrix crossing: degenerate cases. Physica D, 241:566–573, 2012.MATH A. Vasiliev, A. Neishtadt, A. Artemyev, and L. Zelenyi. Jump of the adiabatic invariant at a separatrix crossing: degenerate cases. Physica D, 241:566–573, 2012.MATH
[VNM06]
go back to reference D.L. Vainchstein, A.I. Neishtadt, and I. Mezic. On passage through resonances in volume-preserving systems. Chaos, 16(4):043123, 2006. D.L. Vainchstein, A.I. Neishtadt, and I. Mezic. On passage through resonances in volume-preserving systems. Chaos, 16(4):043123, 2006.
[vNS07]
go back to reference E.H. van Nes and M. Scheffer. Slow recovery from perturbations as generic indicator of a nearby catastrophic shift. Am. Nat., 169(6):738–747, 2007. E.H. van Nes and M. Scheffer. Slow recovery from perturbations as generic indicator of a nearby catastrophic shift. Am. Nat., 169(6):738–747, 2007.
[VWM+05]
go back to reference J.G. Venegas, T. Winkler, G. Musch, M.F. Vidal Melo, D. Layfield, N. Tgavalekos, A.J. Fischman, R.J. Callahan, G. Bellani, and R.S. Harris. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature, 434:777–782, 2005. J.G. Venegas, T. Winkler, G. Musch, M.F. Vidal Melo, D. Layfield, N. Tgavalekos, A.J. Fischman, R.J. Callahan, G. Bellani, and R.S. Harris. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature, 434:777–782, 2005.
[Wal01]
go back to reference D.F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser, 2001. D.F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser, 2001.
[WALC11]
go back to reference S. Wieczorek, P. Ashwin, C.M. Luke, and P.M. Cox. Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A, 467:1243–1269, 2011.MATHMathSciNet S. Wieczorek, P. Ashwin, C.M. Luke, and P.M. Cox. Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A, 467:1243–1269, 2011.MATHMathSciNet
[Wie85]
go back to reference K. Wiesenfeld. Noisy precursors of nonlinear instabilities. J. Stat. Phys., 38(5):1071–1097, 1985.MathSciNet K. Wiesenfeld. Noisy precursors of nonlinear instabilities. J. Stat. Phys., 38(5):1071–1097, 1985.MathSciNet
[Woj97]
go back to reference P. Wojtaszczyk. A Mathematical Introduction to Wavelets, volume 37 of LMS Student Texts. CUP, 1997. P. Wojtaszczyk. A Mathematical Introduction to Wavelets, volume 37 of LMS Student Texts. CUP, 1997.
[WS01]
go back to reference H. Wang and Y. Song. Regularization methods for solving differential-algebraic equations. Appl. Math. Comput., 119(2):283–296, 2001.MATHMathSciNet H. Wang and Y. Song. Regularization methods for solving differential-algebraic equations. Appl. Math. Comput., 119(2):283–296, 2001.MATHMathSciNet
[WS06b]
go back to reference L. Wang and E.D. Sontag. Almost global convergence in singular perturbations of strongly monotone systems. Lect. Notes Contr. Inf. Sci., 341:415, 2006.MathSciNet L. Wang and E.D. Sontag. Almost global convergence in singular perturbations of strongly monotone systems. Lect. Notes Contr. Inf. Sci., 341:415, 2006.MathSciNet
[WS08]
go back to reference L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double phosphorylation cycles. J. Nonlinear Sci., 18(5):527–550, 2008.MATHMathSciNet L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double phosphorylation cycles. J. Nonlinear Sci., 18(5):527–550, 2008.MATHMathSciNet
[YE06]
go back to reference J.Z. Yang and W. E. Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: derivation of continuum models from atomistic models. Phys. Rev. B, 74(18):184110, 2006. J.Z. Yang and W. E. Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: derivation of continuum models from atomistic models. Phys. Rev. B, 74(18):184110, 2006.
[ZFM+97]
go back to reference M.G. Zimmermann, S.O. Firle, M.A. Matiello, M. Hildebrand, M. Eiswirth, M. Bär, A.K. Bangia, and I.G. Kevrekidis. Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction–diffusion model. Physica D, 110(1):92–104, 1997.MATHMathSciNet M.G. Zimmermann, S.O. Firle, M.A. Matiello, M. Hildebrand, M. Eiswirth, M. Bär, A.K. Bangia, and I.G. Kevrekidis. Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction–diffusion model. Physica D, 110(1):92–104, 1997.MATHMathSciNet
[ZS84]
go back to reference A.K. Zvonkin and M.A. Shubin. Non-standard analysis and singular perturbations of ordinary differential equations. Russ. Math. Surveys, 39(2):69–131, 1984.MATHMathSciNet A.K. Zvonkin and M.A. Shubin. Non-standard analysis and singular perturbations of ordinary differential equations. Russ. Math. Surveys, 39(2):69–131, 1984.MATHMathSciNet
Metadata
Title
Other Topics
Author
Christian Kuehn
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-12316-5_19

Premium Partner