Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2016

Open Access 01-12-2016 | Research

Padé approximant related to inequalities for Gauss lemniscate functions

Authors: Juan Liu, Chao-Ping Chen

Published in: Journal of Inequalities and Applications | Issue 1/2016

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the Padé approximation method, we present new inequalities for Gauss lemniscate functions. We also solve a conjecture on inequalities for Gauss lemniscate functions proposed by Sun and Chen.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

1 Introduction

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points \((x, y)\) in the plane satisfying the equation \((x^{2} + y^{2})^{2} = x^{2} + y^{2}\). In polar coordinates \((r, \theta)\), the equation becomes \(r^{2} = \cos(2\theta)\) and its arc length is given by the function
$$\begin{aligned} \operatorname {arcsl}x= \int_{0}^{x}\frac{1}{\sqrt{1-t^{4}}}\,\mathrm{d}t,\quad \vert x \vert \leq1, \end{aligned}$$
(1.1)
where arcsl is called the arc lemniscate sine function studied by Gauss in 1797-1798. Another lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine function, defined as
$$\begin{aligned} \operatorname {arcslh}x= \int_{0}^{x}\frac{1}{\sqrt{1+t^{4}}}\,\mathrm{d}t, \quad x\in \mathbb{R}. \end{aligned}$$
(1.2)
The functions (1.1) and (1.2) can be found (see [1], Chapter 1, [2], p. 259, and [311]).
Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hyperbolic arc lemniscate tangent arctlh, have been introduced in [4], (3.1)-(3.2). Therein it has been proven that
$$\begin{aligned} \operatorname {arctl}x=\operatorname {arcsl}\biggl(\frac{x}{\sqrt[4]{1+x^{4}}} \biggr), \quad x\in \mathbb{R} \end{aligned}$$
(1.3)
and
$$\begin{aligned} \operatorname {arctlh}x=\operatorname {arcslh}\biggl(\frac{x}{\sqrt[4]{1-x^{4}}} \biggr),\quad |x|< 1 \end{aligned}$$
(1.4)
(see [4], Proposition 3.1).
Recently, numerous inequalities have been given for the lemniscate functions [6, 911]. For example, Neuman [6] proved the following inequalities:
$$ \biggl(\frac{5}{3+2(1-x^{4})^{1/2}} \biggr)^{1/2}< \frac{\operatorname {arcsl}x}{x}< \bigl(1-x^{4}\bigr)^{-1/10} $$
(1.5)
and
$$ \biggl(\frac{5}{3+2(1+x^{4})^{1/2}} \biggr)^{1/2}< \frac{\operatorname {arcslh}x}{x}< \bigl(1+x^{4}\bigr)^{-1/10} $$
(1.6)
for \(0<|x|<1\).
Shafer [12] indicated several elementary quadratic approximations of selected functions without proof. Subsequently, Shafer [13] established these results as analytic inequalities. For example, Shafer [13] proved that, for \(x>0\),
$$ \frac{8x}{3+\sqrt{25+\frac{80}{3}x^{2}}}< \arctan x. $$
(1.7)
The inequality (1.7) can also be found in [14]. Zhu [15] developed (1.7) to produce a symmetric double inequality
$$ \frac{8x}{3+\sqrt{25+\frac{80}{3}x^{2}}}< \arctan x< \frac{8x}{3+\sqrt {25+\frac{256}{\pi^{2}}x^{2}}},\quad x>0, $$
(1.8)
where the constants \(80/3\) and \(256/\pi^{2}\) are the best possible. In [15], (1.8) is called a Shafer-type inequality.
Mortici and Srivastava [16] presented new bounds for arctanx. Some inequalities for trigonometric functions were refined in [17].
Very recently, Sun and Chen [18] established the following Shafer-type inequalities for the lemniscate functions:
$$\begin{aligned} &\frac{10}{5+\sqrt{25-10x^{4}}}< \frac{\operatorname {arcsl}x}{x}, \quad 0< x< 1, \end{aligned}$$
(1.9)
$$\begin{aligned} &\frac{10}{5+\sqrt{25-15x^{4}}}< \frac{\operatorname {arctlh}x}{x},\quad 0< x< 1, \end{aligned}$$
(1.10)
$$\begin{aligned} &\frac{95}{80+\sqrt{225+285x^{4}}}< \frac{\operatorname {arcslh}x}{x},\quad x>0, \end{aligned}$$
(1.11)
and presented the following conjecture.
Conjecture 1.1
For \(x>0\),
$$ \frac{\operatorname {arcslh}x}{x}< \frac{95+\frac{931}{2925}x^{12}}{80+\sqrt{225+285x^{4}}} $$
(1.12)
and
$$ \frac{1210}{940+9\sqrt{900+1210x^{4}}}< \frac{\operatorname {arctl}x}{x}< \frac {1210+\frac{2{,}078{,}417}{280{,}800}x^{12}}{940+9\sqrt{900+1210x^{4}}}. $$
(1.13)
Based on the Padé approximation method, in this paper we present new inequalities for Gauss lemniscate functions. We also prove Conjecture 1.1.
Some computations in this paper were performed using Maple software.

2 Padé approximant

For later use, we introduce the Padé approximant (see [1921]). Let f be a formal power series,
$$\begin{aligned} f(t)=c_{0}+c_{1}t+c_{2}t^{2}+ \cdots. \end{aligned}$$
(2.1)
The Padé approximation of order \((p, q)\) of the function f is the rational function, denoted by
$$\begin{aligned}{} [p/q]_{f}(t)=\frac{\sum_{j=0}^{p}a_{j}t^{j}}{1+\sum_{j=1}^{q}b_{j}t^{j}}, \end{aligned}$$
(2.2)
where \(p\geq0\) and \(q\geq1\) are any given integers, the coefficients \(a_{j}\) and \(b_{j}\) are given by (see [19, 21])
$$\begin{aligned} \textstyle\begin{cases} a_{0}=c_{0},\\ a_{1}=c_{0}b_{1}+c_{1},\\ a_{2}=c_{0}b_{2}+c_{1}b_{1}+c_{2},\\ \vdots\\ a_{p} = c_{0}b_{p}+\cdots+ c_{p-1}b_{1} + c_{p,}\\ 0 = c_{p+1} + c_{p}b_{1} + \cdots+ c_{p-q+1}b_{q},\\ \vdots&\\ 0 = c_{p+q} + c_{p+q-1}b_{1} + \cdots+ c_{p}b_{q}, \end{cases}\displaystyle \end{aligned}$$
(2.3)
and we have
$$\begin{aligned}{} [p/q]_{f}(t)- f (t) = O\bigl(t^{p+q+1} \bigr). \end{aligned}$$
(2.4)
Thus, the first \(p + q + 1\) coefficients of the series expansion of \([p/q]_{f}\) are identical to those of f. Moreover, we have (see [20])
$$ \begin{aligned} &[p/q]_{f}(t)= \frac{\left \vert \begin{matrix} t^{q}f_{p-q}(t) & t^{q-1}f_{p-q+1}(t) &\cdots&f_{p}(t) \\ c_{p-q+1} & c_{p-q+2} &\cdots&c_{p+1} \\ \vdots&\vdots&\ddots&\vdots\\ c_{p} & c_{p+1} &\cdots&c_{p+q} \end{matrix} \right \vert } { \left \vert \begin{matrix} t^{q} & t^{q-1} &\cdots&1 \\ c_{p-q+1} & c_{p-q+2} &\cdots&c_{p+1} \\ \vdots&\vdots&\ddots&\vdots\\ c_{p} & c_{p+1} &\cdots&c_{p+q} \end{matrix} \right \vert } , \end{aligned} $$
(2.5)
with \(f_{n}(x) = c_{0}+ c_{1}x+ \cdots+ c_{n}x^{n}\), the nth partial sum of the series f (\(f_{n}\) is identically zero for \(n < 0\)).
Chen [9] presented the following power-series expansions (for \(\vert x\vert <1\)):
$$\begin{aligned} & \frac{\operatorname {arcsl}x}{x}=\sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi }(4n+1)\cdot n!}x^{4n}, \end{aligned}$$
(2.6)
$$\begin{aligned} & \frac{\operatorname {arcslh}x}{x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma (n+\frac{1}{2})}{\sqrt{\pi}(4n+1)\cdot n!}x^{4n}, \end{aligned}$$
(2.7)
$$\begin{aligned} &\frac{\operatorname {arctl}x}{x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma(n+\frac {3}{4})}{\Gamma(\frac{3}{4})\cdot (4n+1)\cdot n!}x^{4n} \end{aligned}$$
(2.8)
and
$$\begin{aligned} \frac{\operatorname {arctlh}x}{x}=\sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{3}{4})}{\Gamma (\frac{3}{4})\cdot (4n+1)\cdot n!}x^{4n}. \end{aligned}$$
(2.9)
We now consider the Padé approximant for the function \(\frac{\operatorname {arcsl}x}{x}\) at the point \(x=0\). Let
$$\begin{aligned} f(t)=\sum_{j=0}^{\infty}c_{j}t^{j}=1+ \frac{1}{10} t+\frac{1}{24} t^{2}+\frac{5}{208}t^{3}+ \frac{35}{2176}t^{4}+\cdots, \end{aligned}$$
(2.10)
with the coefficients \(c_{j}\) given by
$$\begin{aligned} c_{j}=\frac{\Gamma(j+\frac{1}{2})}{\sqrt{\pi}(4j+1)\cdot j!}. \end{aligned}$$
(2.11)
Let us find the \((2, 2)\) Padé approximant for the function (2.10) at the point \(t=0\),
$$\begin{aligned}{} [2/2]_{f}(t)=\frac{\sum_{j=0}^{2}a_{j}t^{j}}{1+\sum_{j=1}^{2}b_{j}t^{j}}. \end{aligned}$$
Noting that
$$\begin{aligned} c_{0}=1,\qquad c_{1}=\frac{1}{10},\qquad c_{2}=\frac{1}{24},\qquad c_{3}=\frac {5}{208},\qquad c_{4}=\frac{35}{2176}, \end{aligned}$$
(2.12)
holds, we have, by (2.3),
$$\begin{aligned} \textstyle\begin{cases} a_{0}=1,\\ a_{1}=b_{1}+\frac{1}{10},\\ a_{2} =b_{2}+\frac{1}{10}b_{1}+ \frac{1}{24} , \\ 0 = \frac{5}{208}+\frac{1}{24}b_{1}+\frac{1}{10}b_{2},\\ 0 =\frac{35}{2176}+\frac{5}{508}b_{1}+\frac{1}{24}b_{2}, \end{cases}\displaystyle \end{aligned}$$
that is,
$$\begin{aligned} a_{0}=1,\qquad a_{1}=-\frac{55}{68},\qquad a_{2} = \frac{23{,}623}{265{,}200},\qquad b_{1}=\frac{309}{340},\qquad b_{2}= \frac{489}{3536}. \end{aligned}$$
We thus obtain
$$ [2/2]_{f}(t)=\frac{1-\frac{55}{68}t+\frac{23{,}623}{265{,}200}t^{2}}{1-\frac {309}{340}t+\frac{489}{3536}t^{2}}, $$
(2.13)
and we have, by (2.4),
$$ f(t)=[2/2]_{f}(t)+O \bigl(t^{5} \bigr). $$
(2.14)
That is
$$ \sum_{j=0}^{\infty} \frac{\Gamma(j+\frac{1}{2})}{\sqrt{\pi }(4j+1)\cdot j!}t^{j}=\frac{1-\frac{55}{68}t+\frac{23{,}623}{265{,}200}t^{2}}{1-\frac {309}{340}t+\frac{489}{3536}t^{2}}+O \bigl(t^{5} \bigr). $$
(2.15)
Replacing t by \(x^{4}\) in (2.15) yields
$$\begin{aligned} \frac{\operatorname {arcsl}x}{x}&=\frac{1-\frac{55}{68}x^{4}+\frac {23{,}623}{265{,}200}x^{8}}{1-\frac{309}{340}x^{4}+\frac{489}{3536}x^{8}}+O \bigl(x^{20} \bigr) \\ &=\frac{265{,}200-214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680-16{,}068x^{4}+2445x^{8})}+O \bigl(x^{20} \bigr). \end{aligned}$$
(2.16)
Remark 2.1
Using (2.5), we can also derive (2.13). Indeed, we have
$$\begin{aligned}{} [2/2]_{f}(t)&=\frac{\left \vert \begin{matrix} t^{2}f_{0}(t) & tf_{1}(t) &f_{2}(t) \\ c_{1} &c_{2} &c_{3} \\ c_{2} &c_{3} &c_{4} \end{matrix} \right \vert } { \left \vert \begin{matrix} t^{2} &t &1 \\ c_{1} &c_{2} &c_{3} \\ c_{2} &c_{3} &c_{4} \end{matrix} \right \vert } = \frac{\left \vert \begin{matrix} t^{2} &t (1+\frac{1}{10} t ) &1+\frac{1}{10} t+\frac{1}{24} t^{2}\\ \frac{1}{10} &\frac{1}{24} &\frac{5}{208} \\ \frac{1}{24} &\frac{5}{208} &\frac{35}{2176} \end{matrix} \right \vert } { \left \vert \begin{matrix} t^{2} &t &1 \\ \frac{1}{10} &\frac{1}{24} &\frac{5}{208} \\ \frac{1}{24} &\frac{5}{208} &\frac{35}{2176} \end{matrix} \right \vert } \\ &=\frac{1-\frac{55}{68}t+\frac{23{,}623}{265{,}200}t^{2}}{1-\frac {309}{340}t+\frac{489}{3536}t^{2}}. \end{aligned}$$
Following the same method as used in the derivation of the formula (2.16), we find
$$\begin{aligned} &\frac{\operatorname {arcslh}x}{x}=\frac{1+\frac{55}{68}x^{4}+\frac {23{,}623}{265{,}200}x^{8}}{1+\frac{309}{340}x^{4}+\frac {489}{3536}x^{8}}+O\bigl(x^{20} \bigr) \\ &\phantom{\frac{\operatorname {arcslh}x}{x}}=\frac{265{,}200+214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680+16{,}068x^{4}+2445x^{8})}+O \bigl(x^{20} \bigr), \end{aligned}$$
(2.17)
$$\begin{aligned} & \frac{\operatorname {arctl}x}{x}=\frac{1+\frac{63}{130}x^{4}- \frac {139}{6240}x^{8}}{1+\frac{33}{52}x^{4}}+O\bigl(x^{16} \bigr), \end{aligned}$$
(2.18)
$$\begin{aligned} &\frac{\operatorname {arctl}x}{x}=\frac{1+\frac{79{,}047}{94{,}520}x^{4}+\frac {565{,}795}{5{,}898{,}048}x^{8}}{1+\frac{18{,}645}{18{,}904}x^{4}+\frac {336{,}105}{1{,}966{,}016}x^{8}}+O\bigl(x^{20} \bigr) \\ &\phantom{\frac{\operatorname {arctl}x}{x}}=\frac {29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})}+O\bigl(x^{20}\bigr) \end{aligned}$$
(2.19)
and
$$\begin{aligned} \frac{\operatorname {arctlh}x}{x}&=\frac{1-\frac{79{,}047}{94{,}520}x^{4}+\frac {565{,}795}{5{,}898{,}048}x^{8}}{1-\frac{18{,}645}{18{,}904}x^{4}+\frac {336{,}105}{1{,}966{,}016}x^{8}}+O\bigl(x^{20} \bigr) \\ &=\frac {29{,}490{,}240-24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016-1{,}939{,}080x^{4}+336{,}105x^{8})}+O\bigl(x^{20}\bigr). \end{aligned}$$
(2.20)
In view of (2.16) and (2.17), we pose the following.
Conjecture 2.1
Let
$$\begin{aligned} \frac{\operatorname {arcsl}x}{x}&=\frac{1+\sum_{j=1}^{n}a_{j}x^{4j}}{1+\sum_{j=1}^{n}b_{j}x^{4j}}+O \bigl(x^{8n+4} \bigr) \end{aligned}$$
(2.21)
and
$$\begin{aligned} \frac{\operatorname {arcslh}x}{x}&=\frac{1+\sum_{j=1}^{n}\alpha_{j}x^{4j}}{1+\sum_{j=1}^{n}\beta_{j}x^{4j}}+O \bigl(x^{8n+4} \bigr). \end{aligned}$$
(2.22)
Then the coefficients \(a_{j}\) and \(\alpha_{j}\) satisfy the following relation:
$$ a_{j}=(-1)^{j}\alpha_{j}, \quad j=1,2, \ldots, n, $$
(2.23)
and the coefficients \(b_{j}\) and \(\beta_{j}\) satisfy the following relation:
$$ b_{j}=(-1)^{j}\beta_{j},\quad j=1,2, \ldots, n. $$
(2.24)
In view of (2.19) and (2.20), we pose the following.
Conjecture 2.2
Let
$$\begin{aligned} \frac{\operatorname {arctl}x}{x}&=\frac{1+\sum_{j=1}^{n}p_{j}x^{4j}}{1+\sum_{j=1}^{n}q_{j}x^{4j}}+O \bigl(x^{8n+4} \bigr) \end{aligned}$$
(2.25)
and
$$\begin{aligned} \frac{\operatorname {arctlh}x}{x}&=\frac{1+\sum_{j=1}^{n}r_{j}x^{4j}}{1+\sum_{j=1}^{n}s_{j}x^{4j}}+O \bigl(x^{8n+4} \bigr). \end{aligned}$$
(2.26)
Then the coefficients \(p_{j}\) and \(r_{j}\) satisfy the following relation:
$$ p_{j}=(-1)^{j}r_{j}, \quad j=1,2,\ldots, n, $$
(2.27)
and the coefficients \(q_{j}\) and \(s_{j}\) satisfy the following relation:
$$ q_{j}=(-1)^{j}s_{j}, \quad j=1,2,\ldots, n. $$
(2.28)

3 Inequalities

Equations (2.16)-(2.20) motivate us to establish the following theorems.
Theorem 3.1
For \(0< x<1\),
$$ \frac{265{,}200-214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680-16{,}068x^{4}+2445x^{8})}< \frac {\operatorname {arcsl}x}{x}. $$
(3.1)
Proof
Consider the function
$$ f(x)=\operatorname {arcsl}x-\frac {x(265{,}200-214{,}500x^{4}+23{,}623x^{8})}{15(17{,}680-16{,}068x^{4}+2445x^{8})},\quad 0< x< 1. $$
Differentiation yields
$$\begin{aligned} f'(x)={}&\frac{1}{\sqrt{1-x^{4}}} \\ &{} -\frac {312{,}582{,}400-411{,}873{,}280x^{4}+177{,}771{,} 984x^{8}-21{,}634{,}288x^{12}+3{,}850{,}549x^{16}}{(17{,}680- 16{,}068x^{4}+2445x^{8})^{2}}. \end{aligned}$$
Elementary calculations reveal that
$$\begin{aligned} & \biggl(\frac{1}{\sqrt{1-t}} \biggr)^{2}\\ &\qquad{}- \biggl(\frac {312{,}582{,}400-411{,}873{,}280t+177{,}771{,}984t^{2}-21{,}634{,}288t^{3}+3{,}850{,}549t^{4}}{(17{,}680-16{,}068t+2445t^{2})^{2}} \biggr)^{2} \\ &\quad =\frac{t^{5}g(t)}{(1-t)(17{,}680-16{,}068t+2445t^{2})^{4}}, \quad 0< t< 1, \end{aligned}$$
where
$$\begin{aligned} g(t)={}&1{,}744{,}280{,}123{,}040{,}000-2{,}406{,}774{,}938{,}256{,}000t \\ &{}+1{,}064{,}272{,}682{,}007{,}600t^{2} \\ &{} -145{,}697{,}716{,}749{,}000t^{3}+14{,}826{,}727{,}601{,}401t^{4}. \end{aligned}$$
We now prove that \(f'(x)>0\) for \(0< x<1\). It suffices to show that \(g(t)>0\) for \(0< t<1\). Differentiation yields
$$\begin{aligned} g'(t)={}&-2{,}406{,}774{,}938{,}256{,}000+2{,}128{,}545{,}364{,}015{,}200t\\ &{}-437{,}093{,}150{,}247{,}000t^{2} \\ &{} +59{,}306{,}910{,}405{,}604t^{3} \end{aligned}$$
and
$$\begin{aligned} g''(t)={}&2{,}128{,}545{,}364{,}015{,}200-874{,}186{,}300{,}494{,}000t\\ &{}+177{,}920{,}731{,}216{,}812t^{2}>0,\quad 0< t< 1. \end{aligned}$$
We then obtain, for \(0< t<1\),
$$\begin{aligned} &g'(t)< g'(1)=-656{,}015{,}814{,}082{,}196< 0\quad \Longrightarrow\\ & g(t)>g(1)=270{,}906{,}877{,}644{,}001>0. \end{aligned}$$
Hence, \(f'(x)>0\) for \(0< x<1\), and we have
$$\begin{aligned} f(x)>f(0)=0, \quad 0< x< 1. \end{aligned}$$
The proof is complete. □
Remark 3.1
There is no strict comparison between the two lower bounds in (1.5) and (3.1).
Theorem 3.2
For \(x>0\),
$$ \frac{\operatorname {arcslh}x}{x}< \frac {265{,}200+214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680+16{,}068x^{4}+2445x^{8})}. $$
(3.2)
Proof
Consider the function
$$ F(x)=\operatorname {arcslh}x-\frac {x(265{,}200+214{,}500x^{4}+23{,}623x^{8})}{15(17{,}680+16{,}068x^{4}+2445x^{8})},\quad x>0. $$
Differentiation yields
$$\begin{aligned} F'(x)={}&\frac{1}{\sqrt{1+x^{4}}} \\ &{} -\frac {312{,}582{,}400+411{,}873{,}280x^{4}+177{,}771{,}984x^{8}+21{,}634{,}288x^{12}+3{,}850{,}549x^{16}}{(17{,}680+16{,}068x^{4}+2445x^{8})^{2}}. \end{aligned}$$
Elementary calculations reveal that
$$\begin{aligned} & \biggl(\frac{1}{\sqrt{1+t}} \biggr)^{2}\\ &\qquad{}- \biggl(\frac {312{,}582{,}400+411{,}873{,}280t+177{,}771{,}984t^{2}+21{,}634{,}288t^{3}+3{,}850{,}549t^{4}}{(17{,}680+16{,}068t+2445t^{2})^{2}} \biggr)^{2} \\ &\quad =-\frac{t^{5}G(t)}{(1+t)(17{,}680+16{,}068t+2445t^{2})^{4}}, \end{aligned}$$
where
$$\begin{aligned} G(t)={}&1{,}744{,}280{,}123{,}040{,}000+2{,}406{,}774{,}938{,}256{,}000t+1{,}064{,}272{,}682{,}007{,}600t^{2} \\ &{} +145{,}697{,}716{,}749{,}000t^{3}+14{,}826{,}727{,}601{,}401t^{4}. \end{aligned}$$
Hence, \(F'(x)<0\) for \(x>0\), and we have
$$\begin{aligned} F(x)< F(0)=0,\quad x>0. \end{aligned}$$
The proof is complete. □
Remark 3.2
For \(0< t<1\), we find
$$\begin{aligned} I(t):={}&\frac{1}{1+t}- \biggl(\frac {265{,}200+214{,}500t+23{,}623t^{2}}{15(17{,}680+16{,}068t+2445t^{2})} \biggr)^{10} \\ ={}&\frac{t^{2}P_{19}(t)}{576{,}650{,}390{,}625(1+t) (17{,}680+16{,}068t+2445t^{2} )^{10}} \end{aligned}$$
with
$$\begin{aligned} P_{19}(t)=P_{16}(t)+t^{17}P_{2}(t), \end{aligned}$$
where
$$\begin{aligned} P_{16}(t)={}&3{,}309{,}224{,}024{,}069{,}080{,}418{,}989{,}754{,}522{,}912{,}085{,}339{,}870{,}997{,}824{,}000t^{16} \\ &{} +\cdots\\ &{}+229{,}442{,}535{,}851{,}108{,}636{,}620{,}015{,}850{,}036{,}920{,}320{,}000{,}000{,}000{,}000{,}000{,}000 \end{aligned}$$
is a polynomial of the 16th degree, having all coefficients positive, and
$$\begin{aligned} P_{2}(t)={}&77{,}541{,}624{,}086{,}159{,}498{,}428{,}020{,}328{,}992{,}837{,}339{,}887{,}447{,}064{,}000 \\ &{} -565{,}686{,}157{,}207{,}722{,}134{,}655{,}870{,}693{,}904{,}642{,}976{,}763{,}301{,}024t \\ &{} -54{,}119{,}091{,}759{,}561{,}776{,}058{,}592{,}767{,}712{,}571{,}305{,}215{,}681{,}649t^{2}>0 \end{aligned}$$
for \(0< t<1\). So, \(I(t)>0\) for \(0< t<1\). We then see that the inequality (3.2) is sharper than the right side of (1.6).
Theorem 3.3
For \(x>0\),
$$\begin{aligned} &\frac{1+\frac{63}{130}x^{4}-\frac{139}{6240}x^{8}}{1+\frac {33}{52}x^{4}}< \frac{\operatorname {arctl}x}{x}< \frac {29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})}. \end{aligned}$$
(3.3)
Proof
Consider the function
$$\begin{aligned} \lambda(x)=\operatorname {arctl}x-\frac{x(1+\frac{63}{130}x^{4}-\frac {139}{6240}x^{8})}{1+\frac{33}{52}x^{4}}. \end{aligned}$$
Differentiation yields
$$\begin{aligned} \lambda'(x)&=\frac{1}{(1+x^{4})^{3/4}}+\frac {x^{3}(48{,}672+14{,}456x^{4}+4587x^{8})}{30(52+33x^{4})^{2}}>0. \end{aligned}$$
We then obtain
$$\begin{aligned} \lambda(x)>\lambda(0)=0,\quad x>0. \end{aligned}$$
Hence the first inequality in (3.3) holds for \(x>0\).
Consider the function
$$ T(x)=\operatorname {arctl}x-\frac {x(29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8})}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})},\quad x>0. $$
Differentiation yields
$$\begin{aligned} T'(x)&=\frac{1}{(1+x^{4})^{3/4}}-\frac {P_{16}(x)}{(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})^{2}}, \end{aligned}$$
where
$$\begin{aligned} P_{16}(x)={}&3{,}865{,}218{,}912{,}256+4{,}725{,}610{,}426{,}368x^{4}+1{,}899{,}763{,}315{,}008x^{8} \\ & {}+170{,}687{,}344{,}256x^{12}+63{,}388{,}842{,}825x^{16}. \end{aligned}$$
Elementary calculations reveal that
$$\begin{aligned} &\frac{1}{(1+x^{4})^{3}}- \biggl(\frac {P_{16}(x)}{(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})^{2}} \biggr)^{4} \\ & \quad =-\frac{x^{20}P_{56}(x)}{(1+x^{4})^{3}(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})^{8}}, \end{aligned}$$
where
$$\begin{aligned} P_{56}(x)={}&13{,}193{,}567{,}461{,}486{,}862{,}074{,}082{,}196{,}527{,}146{,}063{,}235{,}598{,}765{,}785{,}088 \\ &{}+75{,}159{,}817{,}580{,}420{,}162{,}914{,}879{,}309{,}165{,}363{,}929{,}497{,}102{,}849{,}146{,}880x^{4} \\ &{}+190{,}493{,}075{,}741{,}254{,}897{,}950{,}338{,}074{,}805{,}626{,}536{,}902{,}462{,}936{,}186{,}880x^{8} \\ &{}+283{,}233{,}781{,}637{,}227{,}052{,}608{,}425{,}496{,}608{,}925{,}420{,}321{,}925{,}549{,}260{,}800x^{12} \\ &{}+274{,}381{,}791{,}750{,}085{,}496{,}947{,}276{,}941{,}731{,}670{,}794{,}946{,}132{,}888{,}780{,}800x^{16} \\ &{}+182{,}271{,}787{,}590{,}701{,}615{,}339{,}301{,}540{,}193{,}194{,}594{,}557{,}235{,}390{,}578{,}688x^{20} \\ &+85{,}570{,}287{,}614{,}566{,}775{,}085{,}144{,}063{,}641{,}805{,}696{,}286{,}360{,}924{,}323{,}840x^{24} \\ &{}+29{,}163{,}131{,}006{,}055{,}200{,}534{,}183{,}374{,}987{,}447{,}946{,}919{,}333{,}657{,}968{,}640x^{28} \\ &{}+7{,}481{,}144{,}367{,}677{,}341{,}229{,}619{,}045{,}201{,}182{,}337{,}247{,}982{,}930{,}534{,}400x^{32} \\ &{}+1{,}502{,}545{,}339{,}351{,}309{,}468{,}552{,}186{,}115{,}563{,}901{,}082{,}330{,}882{,}201{,}600x^{36} \\ &{}+238{,}495{,}639{,}577{,}137{,}257{,}561{,}813{,}891{,}822{,}862{,}592{,}696{,}929{,}928{,}896x^{40} \\ &{}+29{,}999{,}531{,}147{,}567{,}967{,}753{,}948{,}099{,}263{,}441{,}234{,}315{,}939{,}560{,}800x^{44} \\ &{}+3{,}208{,}050{,}013{,}558{,}968{,}652{,}633{,}219{,}730{,}412{,}159{,}840{,}683{,}611{,}875x^{48} \\ &{}+222{,}336{,}558{,}000{,}169{,}152{,}230{,}844{,}556{,}985{,}454{,}831{,}178{,}171{,}875x^{52} \\ &{}+16{,}145{,}492{,}412{,}888{,}980{,}411{,}169{,}048{,}998{,}579{,}532{,}875{,}390{,}625x^{56}. \end{aligned}$$
Hence, \(T'(x)<0\) for \(x>0\), and we have
$$\begin{aligned} T(x)< T(0)=0,\quad x>0. \end{aligned}$$
Hence, the second inequality in (3.3) holds for \(x>0\). The proof is complete. □
Theorem 3.4
For \(0< x<1\),
$$\begin{aligned} &\frac {29{,}490{,}240-24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016-1{,}939{,}080x^{4}+336{,}105x^{8})}< \frac {\operatorname {arctlh}x}{x}. \end{aligned}$$
(3.4)
Proof
Consider the function
$$ H(x)=\operatorname {arctlh}x-\frac {x(29{,}490{,}240-24{,}662{,}664x^{4}+2{,}828{,}975x^{8})}{15(1{,}966{,}016-1{,}939{,}080x^{4}+336{,}105x^{8})},\quad 0< x< 1. $$
Differentiation yields
$$\begin{aligned} H'(x)&=\frac{1}{(1-x^{4})^{3/4}}-\frac {Q(x^{4})}{(1{,}966{,}016-1{,}939{,}080x^{4}+336{,}105x^{8})^{2}}, \end{aligned}$$
where
$$\begin{aligned} Q(t)={}&3{,}865{,}218{,}912{,}256-4{,}725{,}610{,}426{,}368t+1{,}899{,}763{,}315{,}008t^{2} \\ &{} -170{,}687{,}344{,}256t^{3}+63{,}388{,}842{,}825t^{4},\quad 0< t< 1. \end{aligned}$$
Elementary calculations reveal that
$$\begin{aligned} &\frac{1}{(1-t)^{3}}- \biggl(\frac {Q(t)}{(1{,}966{,}016-1{,}939{,}080t+336{,}105t^{2})^{2}} \biggr)^{4} \\ &\quad =\frac{t^{5}R(t)}{(1-t)^{3}(1{,}966{,}016-1{,}939{,}080t+336{,}105t^{2})^{8}}, \end{aligned}$$
where
$$\begin{aligned} R(t)={}&301{,}748{,}693{,}573{,}399{,}407{,}094{,}173{,}717{,}482{,}883{,}533{,}487{,}653{,}121 \\ &{}+9{,}932{,}615{,}535{,}811{,}554{,}413{,}076{,}061{,}553{,}884{,}665{,}646{,}471{,}005{,}365(1-t) \\ &{}+151{,}766{,}449{,}766{,}787{,}034{,}704{,}161{,}483{,}173{,}419{,}604{,}277{,}111{,}004{,}855(1-t)^{2} \\ &{}+680{,}433{,}563{,}535{,}649{,}162{,}659{,}902{,}808{,}405{,}182{,}093{,}255{,}793{,}778{,}810(1-t)^{3} \\ &{}+1856{,}390{,}570{,}444{,}186{,}005{,}047{,}799{,}006{,}039{,}729{,}435{,}155{,}242{,}856{,}245(1-t)^{4} \\ &{}+3{,}124{,}371{,}679{,}128{,}783{,}209{,}196{,}299{,}976{,}215{,}123{,}075{,}149{,}799{,}026{,}971(1-t)^{5} \\ &{}+3{,}542{,}098{,}875{,}374{,}455{,}780{,}446{,}672{,}503{,}755{,}643{,}630{,}859{,}189{,}032{,}595(1-t)^{6} \\ &{}+2{,}471{,}319{,}403{,}553{,}122{,}128{,}066{,}406{,}333{,}619{,}269{,}039{,}662{,}418{,}255{,}020(1-t)^{7} \\ &{}+1{,}090{,}939{,}975{,}419{,}395{,}315{,}836{,}646{,}390{,}524{,}713{,}606{,}873{,}688{,}710{,}195(1-t)^{8} \\ &{}+188{,}439{,}516{,}872{,}719{,}220{,}883{,}777{,}738{,}283{,}311{,}857{,}263{,}725{,}003{,}515(1-t)^{9} \\ &{}+72{,}805{,}480{,}166{,}035{,}035{,}195{,}735{,}976{,}881{,}949{,}595{,}398{,}022{,}003{,}221(1-t)^{10} \\ &{}+2{,}968{,}223{,}270{,}581{,}948{,}926{,}689{,}804{,}107{,}877{,}843{,}092{,}991{,}437{,}050(1-t)^{11} \\ &{}+ \bigl(1{,}786{,}914{,}569{,}129{,}666{,}891{,}048{,}623{,}948{,}471{,}984{,}527{,}027{,}924{,}375 \\ &{} -3{,}700{,}335{,}780{,}276{,}573{,}525{,}522{,}128{,}994{,}658{,}629{,}077{,}296{,}875(1-t) \bigr) (1-t)^{12} \\ &{}+16{,}145{,}492{,}412{,}888{,}980{,}411{,}169{,}048{,}998{,}579{,}532{,}875{,}390{,}625(1-t)^{14}. \end{aligned}$$
Since \(R(t)>0\) for \(0< t<1\), we have \(H'(x)>0\) for \(0< x<1\). We then obtain
$$\begin{aligned} H(x)>H(0)=0, \quad 0< x< 1. \end{aligned}$$
The proof is complete. □

4 Proof of Conjecture 1.1

Proof of (1.12)
It suffices to show by (3.2) that
$$\begin{aligned} \frac{265{,}200+214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680+16{,}068x^{4}+2445x^{8})}< \frac {95+\frac{931}{2925}x^{12}}{80+\sqrt{225+285x^{4}}},\quad x>0, \end{aligned}$$
i.e.,
$$\begin{aligned} \frac{95+\frac{931}{2925}x^{12}}{\frac {265{,}200+214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680+16{,}068x^{4}+2445x^{8})}}-80>\sqrt {225+285x^{4}},\quad x>0. \end{aligned}$$
(4.1)
Elementary calculations show that
$$\begin{aligned} & \biggl(\frac{95+\frac{931}{2925}x^{12}}{\frac {265{,}200+214{,}500x^{4}+23{,}623x^{8}}{15(17{,}680+16{,}068x^{4}+2445x^{8})}}-80 \biggr)^{2}- \bigl( \sqrt{225+285x^{4}} \bigr)^{2} \\ & \quad =\frac{x^{16}P_{24}(x)}{(265{,}200+214{,}500x^{4}+23{,}623x^{8})^{2}}, \end{aligned}$$
where
$$\begin{aligned} P_{24}(x)={}&2{,}214{,}994{,}396{,}680{,}000+2{,}167{,}794{,}625{,} 751{,}625x^{4}\\ &{}+771{,}850{,}648{,}332{,}400x^{8} \\ & {}+100{,}410{,}388{,}038{,}870x^{12}+15{,}721{,}941{,}655{,}056x^{16} +3{,}584{,}399{,}789{,}880x^{20} \\ &{} +272{,}711{,}522{,}475x^{24}. \end{aligned}$$
We see from \(P_{24}(x)>0\) that (4.1) holds. The proof is complete. □
Proof of (1.13)
First of all, we prove the second inequality in (1.13). It suffices to show by the right-hand side of (3.3) that
$$ \frac {29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})}< \frac {1210+\frac{2{,}078{,}417}{280{,}800}x^{12}}{940+9\sqrt{900+1210x^{4}}},\quad x>0, $$
i.e.,
$$ \frac{1210+\frac{2{,}078{,}417}{280{,}800}x^{12}}{\frac {29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})}}-940>9\sqrt {900+1210x^{4}},\quad x>0. $$
(4.2)
Elementary calculations show that
$$\begin{aligned} & \biggl(\frac{1210+\frac{2{,}078{,}417}{280{,}800}x^{12}}{\frac {29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8}}{15(1{,}966{,}016+1{,}939{,}080x^{4}+336{,}105x^{8})}}-940 \biggr)^{2}- \bigl(9 \sqrt{900+1210x^{4}} \bigr)^{2} \\ &\quad =\frac{P_{40}(x)}{350{,}438{,}400(29{,}490{,}240+24{,}662{,}664x^{4}+2{,}828{,}975x^{8})^{2}}, \end{aligned}$$
where
$$\begin{aligned} P_{40}(x)={}&423{,}992{,}204{,}507{,}234{,}653{,}175{,}808{,}000{,}000\\ &{}+813{,}161{,}362{,}018{,}201{,}812{,}231{,}782{,}400{,}000x^{4} \\ &{}+516{,}869{,}957{,}972{,}853{,}387{,}975{,}720{,}960{,}000x^{8}\\ &{}+125{,}747{,}707{,}439{,}033{,}797{,}403{,}639{,}808{,}000x^{12} \\ &{}+18{,}812{,}522{,}309{,}950{,}882{,}139{,}627{,}520{,}000x^{16}\\ &{}+6{,}902{,}175{,}873{,}182{,}801{,}970{,}021{,}120{,}000x^{20} \\ &{}+1{,}857{,}663{,}393{,}190{,}652{,}946{,}224{,}195{,}584x^{24}\\ &{}+192{,}485{,}925{,}752{,}231{,}924{,}989{,}587{,}840x^{28} \\ &{}+21{,}951{,}612{,}856{,}626{,}590{,}316{,}104{,}640x^{32}\\ &{}+5{,}630{,}747{,}696{,}194{,}377{,}041{,}485{,}200x^{36} \\ &{}+487{,}994{,}939{,}463{,}408{,}187{,}266{,}225x^{40}. \end{aligned}$$
We see from \(P_{40}(x)>0\) that (4.2) holds. Hence, the second inequality in (1.13) holds.
Second, we prove the first inequality in (1.13). We consider two cases.
Case 1. \(0< x<1\).
It suffices to show by the left-hand side of (3.3) that
$$\begin{aligned} &\frac{1210}{940+9\sqrt{900+1210x^{4}}}< \frac{1+\frac {63}{130}x^{4}-\frac{139}{6240}x^{8}}{1+\frac{33}{52}x^{4}},\quad 0< x< 1, \end{aligned}$$
i.e.,
$$\begin{aligned} 9\sqrt{900+1210x^{4}}>\frac{1210}{\frac{1+\frac{63}{130}x^{4}-\frac {139}{6240}x^{8}}{1+\frac{33}{52}x^{4}}}-940,\quad 0< x< 1. \end{aligned}$$
(4.3)
Elementary calculations show that
$$\begin{aligned} & \bigl(9\sqrt{900+1210x^{4}} \bigr)^{2}- \biggl( \frac{1210}{\frac {1+\frac{63}{130}x^{4}-\frac{139}{6240}x^{8}}{1+\frac {33}{52}x^{4}}}-940 \biggr)^{2} \\ & \quad =\frac {1210x^{12}(128{,}621{,}376-81{,}039{,}502x^{4}+1{,}565{,}001x^{8})}{(6240+3024x^{4}-139x^{8})^{2}}>0,\quad 0< x< 1, \end{aligned}$$
which shows that (4.3) holds.
Case 2. \(x\geq1\).
Consider the function \(U(x)\) defined by
$$ U(x)=\operatorname {arctl}x-\frac{1210x}{940+9\sqrt{900+1210x^{4}}}. $$
Differentiation yields
$$\begin{aligned} U'(x)&=\frac{1}{(1+x^{4})^{3/4}}+\frac{12{,}100(1089x^{4}-94\sqrt {900+1210x^{4}}-810)}{(940+9\sqrt{900+1210x^{4}})^{2}\sqrt{900+1210x^{4}}}. \end{aligned}$$
(4.4)
Noting that
$$\begin{aligned} 1089x^{4}-94\sqrt{900+1210x^{4}}-810>0,\quad x\geq2, \end{aligned}$$
holds, we obtain
$$\begin{aligned} U'(x)>0,\quad x\geq2. \end{aligned}$$
We now show that \(U'(x)>0\) is also valid for \(1\leq x<2\). It suffices to show that
$$\begin{aligned} y(x)>0, \quad 1\leq x< 2, \end{aligned}$$
where
$$\begin{aligned} y(x)=y_{1}(x)+y_{2}(x), \end{aligned}$$
with
$$\begin{aligned} y_{1}(x)=\frac{(940+9\sqrt{900+1210x^{4}})^{2}\sqrt {900+1210x^{4}}}{12{,}100(1+x^{4})^{3/4}}+1089x^{4}-810 \end{aligned}$$
and
$$\begin{aligned} y_{2}(x)=-94\sqrt{900+1210x^{4}}. \end{aligned}$$
Differentiation yields
$$\begin{aligned} y'_{1}(x)=\frac{x^{3}(940+9\sqrt{900+1210x^{4}})y_{3}(x)}{1210 (1+x^{4} )^{7/4}\sqrt{900+1210x^{4}}}+32{,}596x^{3}, \end{aligned}$$
where
$$\begin{aligned} y_{3}(x)={}&4104\sqrt{900+1210x^{4}}+3267x^{4}\sqrt {900+1210x^{4}}-113{,}740x^{4}-26{,}320 \\ >{}&4104\sqrt{1210x^{4}}+3267x^{4}\sqrt{1210x^{4}}-113{,}740x^{4}-26{,}320 \\ ={}&81{,}081\sqrt{10}-140{,}060+(305{,}910\sqrt{10}-454{,}960) (x-1) \\ &{} +(584{,}199\sqrt{10}-682{,}440) (x-1)^{2}+(718{,}740\sqrt {10}-454{,}960) (x-1)^{3} \\ &{} +(539{,}055\sqrt{10}-113{,}740) (x-1)^{4}+215{,}622\sqrt {10}(x-1)^{5}+35{,}937 \sqrt{10}(x-1)^{6} \\ >{}&0 \quad\text{for } 1\leq x< 2. \end{aligned}$$
Hence, we have \(y'_{1}(x)>0\) for \(1\leq x<2\).
Let \(1\leq r \leq x \leq s \leq2\). Since \(y_{1}(x)\) is increasing and \(y_{2}(x)\) is decreasing for \(1\leq x\leq2\), we obtain
$$\begin{aligned} y(x)\geq y_{1}(r)+y_{2}(s)=:\sigma_{1}(r,s). \end{aligned}$$
We divide the interval \([1, 2]\) into 100 subintervals:
$$\begin{aligned}{} [1, 2]=\bigcup_{k=0}^{99} \biggl[1+ \frac{k}{100}, 1+\frac{k+1}{100} \biggr]>0 \quad\text{for } k = 0, 1, 2, \ldots, 99. \end{aligned}$$
By direct computation we get
$$\begin{aligned} \sigma_{1} \biggl(1+\frac{k}{100}, 1+\frac{k+1}{100} \biggr)>0 \quad\text{for } k = 0, 1, 2, \ldots, 99. \end{aligned}$$
Hence,
$$\begin{aligned} y(x)>0\quad \text{for } x\in \biggl[1+\frac{k}{100}, 1+\frac{k+1}{100} \biggr] \text{ and } k = 0, 1, 2, \ldots, 99. \end{aligned}$$
This proves \(U'(x)>0\) for \(1\leq x<2\).
We then obtain \(U'(x)>0\) for all \(x\geq1\), and we have
$$\begin{aligned} U(x)>U(1)=0.00154438\ldots>0 \quad\text{for } x\geq1, \end{aligned}$$
which shows the first inequality in (1.13) holds for \(x\geq1\). Thus, the first inequality in (1.13) holds for all \(x>0\). The proof is complete. □

Acknowledgements

The authors thank the referees for helpful comments.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.
Literature
1.
go back to reference Siegel, CL: Topics in Complex Function Theory, vol. 1. Wiley, New York (1969) MATH Siegel, CL: Topics in Complex Function Theory, vol. 1. Wiley, New York (1969) MATH
2.
go back to reference Borwein, JM, Borwein, PB: Pi and the AGM: A Study in the Analytic Number Theory and Computational Complexity. Wiley, New York (1987) MATH Borwein, JM, Borwein, PB: Pi and the AGM: A Study in the Analytic Number Theory and Computational Complexity. Wiley, New York (1987) MATH
4.
5.
go back to reference Neuman, E: Two-sided inequalities for the lemniscate functions. J. Inequal. Spec. Funct. 1, 1-7 (2010) MathSciNetMATH Neuman, E: Two-sided inequalities for the lemniscate functions. J. Inequal. Spec. Funct. 1, 1-7 (2010) MathSciNetMATH
6.
7.
go back to reference Neuman, E: Inequalities for Jacobian elliptic functions and Gauss lemniscate functions. Appl. Math. Comput. 218, 7774-7782 (2012) MathSciNetMATH Neuman, E: Inequalities for Jacobian elliptic functions and Gauss lemniscate functions. Appl. Math. Comput. 218, 7774-7782 (2012) MathSciNetMATH
10.
go back to reference Chen, CP: Wilker and Huygens type inequalities for the lemniscate functions, II. Math. Inequal. Appl. 16, 577-586 (2013) MathSciNetMATH Chen, CP: Wilker and Huygens type inequalities for the lemniscate functions, II. Math. Inequal. Appl. 16, 577-586 (2013) MathSciNetMATH
13.
go back to reference Shafer, RE: Analytic inequalities obtained by quadratic approximation. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 577-598, 96-97 (1977) MathSciNetMATH Shafer, RE: Analytic inequalities obtained by quadratic approximation. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 577-598, 96-97 (1977) MathSciNetMATH
14.
go back to reference Shafer, RE: On quadratic approximation, II. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 602-633, 163-170 (1978) MathSciNetMATH Shafer, RE: On quadratic approximation, II. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 602-633, 163-170 (1978) MathSciNetMATH
16.
go back to reference Mortici, C, Srivastava, HM: Estimates for the arctangent function related to Shafer’s inequality. Colloq. Math. 136, 263-270 (2014) MathSciNetCrossRefMATH Mortici, C, Srivastava, HM: Estimates for the arctangent function related to Shafer’s inequality. Colloq. Math. 136, 263-270 (2014) MathSciNetCrossRefMATH
17.
20.
go back to reference Brezinski, C, Redivo-Zaglia, M: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69-77 (2015) MathSciNetCrossRefMATH Brezinski, C, Redivo-Zaglia, M: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69-77 (2015) MathSciNetCrossRefMATH
21.
go back to reference Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci. Appl. 9, 5011-5020 (2016) MATH Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci. Appl. 9, 5011-5020 (2016) MATH
Metadata
Title
Padé approximant related to inequalities for Gauss lemniscate functions
Authors
Juan Liu
Chao-Ping Chen
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2016
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1262-2

Other articles of this Issue 1/2016

Journal of Inequalities and Applications 1/2016 Go to the issue

Premium Partner