Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Paper as a Substrate for Sensors

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Paper has been present in our culture for more than two thousand years, traditionally used to represent value, store information, for communication, sanitary use, packaging and many more. Recently, this material was rediscovered as a valuable substrate for electronic applications, sensors and microfluidic platforms. In this chapter we will take a closer look at the chemical composition of paper, its structure, and how they influence analytical performence of paper-based devices. Short history of paper-based analytics will also be presented, going back as far as to the beginings of the Current Era. In the end more focus will be given to up-to-date applications of paper in analytical systems including novel possiblities in the areas of both architecture and detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Spence KL, Venditti R, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi:10.1007/s10570-010-9424-8 Spence KL, Venditti R, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose 17:835–848. doi:10.​1007/​s10570-010-9424-8
5.
go back to reference Lackinger E, Schmid L, Sartori J et al (2011) Novel paper sizing agents from renewables. Part 1: Preparation of a paper sizing agent derived from natural plant oils. Holzforschung 65:3–11. doi:10.1515/HF.2011.007 Lackinger E, Schmid L, Sartori J et al (2011) Novel paper sizing agents from renewables. Part 1: Preparation of a paper sizing agent derived from natural plant oils. Holzforschung 65:3–11. doi:10.​1515/​HF.​2011.​007
6.
go back to reference Ramasamy SM, Hurtubise RJ (1998) Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper. Talanta 47:971–979CrossRef Ramasamy SM, Hurtubise RJ (1998) Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper. Talanta 47:971–979CrossRef
8.
go back to reference Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064. doi:10.1021/ac901714h CrossRef Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064. doi:10.​1021/​ac901714h CrossRef
10.
12.
go back to reference Bracher PJ, Gupta M, MacK ET, Whitesides GM (2009) Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl Mater Interfaces 1:1807–1812. doi:10.1021/am900340m CrossRef Bracher PJ, Gupta M, MacK ET, Whitesides GM (2009) Heterogeneous films of ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl Mater Interfaces 1:1807–1812. doi:10.​1021/​am900340m CrossRef
13.
go back to reference Werner O, Quan C, Turner C et al (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17:187–198. doi:10.1007/s10570-009-9374-1 CrossRef Werner O, Quan C, Turner C et al (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17:187–198. doi:10.​1007/​s10570-009-9374-1 CrossRef
15.
go back to reference Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595CrossRef Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595CrossRef
17.
go back to reference Tseng S-C, Yu C-C, Wan D et al (2012) Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal Chem 84:5140–5145. doi:10.1021/ac300397h CrossRef Tseng S-C, Yu C-C, Wan D et al (2012) Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal Chem 84:5140–5145. doi:10.​1021/​ac300397h CrossRef
18.
go back to reference Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 28:8782–8790. doi:10.1021/la3012734 CrossRef Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 28:8782–8790. doi:10.​1021/​la3012734 CrossRef
19.
go back to reference Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707. doi:10.1021/ac800112r CrossRef Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707. doi:10.​1021/​ac800112r CrossRef
20.
go back to reference Fu E, Liang T, Spicar-Mihalic P et al (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi:10.1021/ac300689s CrossRef Fu E, Liang T, Spicar-Mihalic P et al (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi:10.​1021/​ac300689s CrossRef
22.
go back to reference Gu Z, Zhao M, Sheng Y et al (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329. doi:10.1021/ac103236g CrossRef Gu Z, Zhao M, Sheng Y et al (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329. doi:10.​1021/​ac103236g CrossRef
23.
go back to reference Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. Appl Mater Interfaces 3:642–647CrossRef Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. Appl Mater Interfaces 3:642–647CrossRef
24.
go back to reference Osborn JL, Lutz B, Fu E et al (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:2659–2665. doi:10.1039/c004821f CrossRef Osborn JL, Lutz B, Fu E et al (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:2659–2665. doi:10.​1039/​c004821f CrossRef
26.
go back to reference Nie Z, Nijhuis C, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–83. doi:10.1039/b917150a Nie Z, Nijhuis C, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–83. doi:10.​1039/​b917150a
31.
go back to reference Kouisni L, Rochefort D (2008) Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates. J Appl Polym Sci 111:1–10. doi:10.1002/app CrossRef Kouisni L, Rochefort D (2008) Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates. J Appl Polym Sci 111:1–10. doi:10.​1002/​app CrossRef
33.
36.
go back to reference Barr MC, Rowehl J a, Lunt RR et al (2011) Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23:3500–3505. doi:10.1002/adma.201101263 Barr MC, Rowehl J a, Lunt RR et al (2011) Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23:3500–3505. doi:10.​1002/​adma.​201101263
38.
go back to reference Gimenez AJ, Yanez-Limon JM, Seminario JM (2011) ZnO-Paper Based Photoconductive UV Sensor. J Phys Chem C 282–287 Gimenez AJ, Yanez-Limon JM, Seminario JM (2011) ZnO-Paper Based Photoconductive UV Sensor. J Phys Chem C 282–287
39.
go back to reference ul Hasan K, Nur O, Willander M, Hasan K (2012) Screen printed ZnO ultraviolet photoconductive sensor on pencil drawn circuitry over paper. Appl Phys Lett 100:211104. doi:10.1063/1.4720179 ul Hasan K, Nur O, Willander M, Hasan K (2012) Screen printed ZnO ultraviolet photoconductive sensor on pencil drawn circuitry over paper. Appl Phys Lett 100:211104. doi:10.​1063/​1.​4720179
42.
go back to reference Novell M, Parrilla M, Crespo G et al (2012) Paper-based ion-selective potentiometric sensors. Anal Chem 84:4695–4702. doi:10.1021/ac202979j Novell M, Parrilla M, Crespo G et al (2012) Paper-based ion-selective potentiometric sensors. Anal Chem 84:4695–4702. doi:10.​1021/​ac202979j
48.
go back to reference Cheng M-LL, Tsai B-CC, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96. doi:10.1016/j.aca.2011.10.013 CrossRef Cheng M-LL, Tsai B-CC, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96. doi:10.​1016/​j.​aca.​2011.​10.​013 CrossRef
50.
go back to reference Yu J, Ge L, Huang J et al (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291. doi:10.1039/c0lc00524j CrossRef Yu J, Ge L, Huang J et al (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291. doi:10.​1039/​c0lc00524j CrossRef
51.
go back to reference Yu J, Wang S, Ge L, Ge S (2011) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26:3284–3289CrossRef Yu J, Wang S, Ge L, Ge S (2011) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26:3284–3289CrossRef
52.
go back to reference Carrilho E, Martinez AW, Whitesides GM et al (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. doi:10.1021/ac901071p CrossRef Carrilho E, Martinez AW, Whitesides GM et al (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. doi:10.​1021/​ac901071p CrossRef
54.
go back to reference Hardman DJ, Slater JH, Reid AG et al (2003) Biochemical and immunochemical assay device. WO Pat WO/1998/032,018 17:1–17 Hardman DJ, Slater JH, Reid AG et al (2003) Biochemical and immunochemical assay device. WO Pat WO/1998/032,018 17:1–17
55.
go back to reference Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82. doi:10.1039/c0an00406e CrossRef Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82. doi:10.​1039/​c0an00406e CrossRef
59.
go back to reference Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075. doi:10.1039/b909868b CrossRef Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075. doi:10.​1039/​b909868b CrossRef
60.
61.
64.
go back to reference Lu Y, Lin B, Qin J (2011) Patterned Paper as a Low-Cost, Flexible Substrate for Rapid Prototyping of PDMS Microdevices via “Liquid Molding.” Anal Chem 1830–1835. doi:10.1021/ac102577n Lu Y, Lin B, Qin J (2011) Patterned Paper as a Low-Cost, Flexible Substrate for Rapid Prototyping of PDMS Microdevices via “Liquid Molding.” Anal Chem 1830–1835. doi:10.​1021/​ac102577n
65.
67.
68.
69.
go back to reference Bruzewicz D a, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:1–9. doi:10.1021/ac702605a Bruzewicz D a, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:1–9. doi:10.​1021/​ac702605a
70.
go back to reference Song Y, Lundeberg J, Brumer H (2012) Activated paper surfaces for the rapid hybridization of dna through capillary transport. Anal Chem 84:3311–3317CrossRef Song Y, Lundeberg J, Brumer H (2012) Activated paper surfaces for the rapid hybridization of dna through capillary transport. Anal Chem 84:3311–3317CrossRef
71.
go back to reference Apilux A, Dungchai W, Siangproh W et al (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82:1727–1732. doi:10.1021/ac9022555 CrossRef Apilux A, Dungchai W, Siangproh W et al (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82:1727–1732. doi:10.​1021/​ac9022555 CrossRef
72.
go back to reference Ellerbee AK, Phillips ST, Siegel AC et al (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81:8447–8452. doi:10.1021/ac901307q CrossRef Ellerbee AK, Phillips ST, Siegel AC et al (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81:8447–8452. doi:10.​1021/​ac901307q CrossRef
73.
74.
75.
go back to reference Vella SJ, Beattie P, Cademartiri R et al (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84:2883–2891. doi:10.1021/ac203434x CrossRef Vella SJ, Beattie P, Cademartiri R et al (2012) Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84:2883–2891. doi:10.​1021/​ac203434x CrossRef
76.
go back to reference Schilling KM, Lepore AL, Kurian J a, Martinez AW (2012) Fully enclosed microfluidic paper-based analytical devices. Anal Chem 84:1579–85. doi:10.1021/ac202837s Schilling KM, Lepore AL, Kurian J a, Martinez AW (2012) Fully enclosed microfluidic paper-based analytical devices. Anal Chem 84:1579–85. doi:10.​1021/​ac202837s
78.
go back to reference Wang P, Ge L, Yan M et al (2012) Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens Bioelectron 32:238–243. doi:10.1016/j.bios.2011.12.021 CrossRef Wang P, Ge L, Yan M et al (2012) Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens Bioelectron 32:238–243. doi:10.​1016/​j.​bios.​2011.​12.​021 CrossRef
81.
go back to reference Elder P The (79AD) Natural History, 1601st edn. Elder P The (79AD) Natural History, 1601st edn.
82.
go back to reference Crosland M (1978) Gay-Lussac Scientist and Bourgeois. Cambridge University Press Crosland M (1978) Gay-Lussac Scientist and Bourgeois. Cambridge University Press
83.
go back to reference Feigl F (1975) Development, present state and prospects of organic spot test analysis. In: Spot Test Org. Anal., 7th edn. Elsevier Scientific Publishing Company, p 1 Feigl F (1975) Development, present state and prospects of organic spot test analysis. In: Spot Test Org. Anal., 7th edn. Elsevier Scientific Publishing Company, p 1
84.
go back to reference Rocco RM (2006) Landmark papers in clinical chemistry, pp 323–324. In: Landmark Pap. Clin. Chem. Elsevier Science, p 522 Rocco RM (2006) Landmark papers in clinical chemistry, pp 323–324. In: Landmark Pap. Clin. Chem. Elsevier Science, p 522
87.
go back to reference Muller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21:1123–1125CrossRef Muller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21:1123–1125CrossRef
89.
go back to reference Stock R, Rice CBF (1974) Chromatographic methods, 3rd edn. Chapman and Hall and Science Paperbacks Stock R, Rice CBF (1974) Chromatographic methods, 3rd edn. Chapman and Hall and Science Paperbacks
90.
go back to reference Kunkel HG, Tiselius A, Andersen OS (1951) Electrophoresis of proteins on filter paper. J Gen Physiol 35:1–2CrossRef Kunkel HG, Tiselius A, Andersen OS (1951) Electrophoresis of proteins on filter paper. J Gen Physiol 35:1–2CrossRef
93.
go back to reference Allen MP, DeLizza A, Ramel U et al (1990) A noninstrumented quantitative test system and its application for determining cholesterol concentration in whole blood. Clin Chem 36:1591–1597 Allen MP, DeLizza A, Ramel U et al (1990) A noninstrumented quantitative test system and its application for determining cholesterol concentration in whole blood. Clin Chem 36:1591–1597
94.
go back to reference Allen MP (1995) Laminated assay device. 15:1–15 Allen MP (1995) Laminated assay device. 15:1–15
95.
97.
go back to reference Parolo C, Medina-Sánchez M, de la Escosura-Muñiz A, Merkoci A (2012) Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay. Lab Chip 386–390. doi:10.1039/c2lc41144j Parolo C, Medina-Sánchez M, de la Escosura-Muñiz A, Merkoci A (2012) Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassay. Lab Chip 386–390. doi:10.​1039/​c2lc41144j
98.
go back to reference Choi S, Lee J-H, Kwak BS et al (2015) Signal amplification in a microfluidic paper-based analytical device (µ-PAD) by confinement of the fluidic flow. BioChip J. doi:10.1007/s13206-015-9204-5 Choi S, Lee J-H, Kwak BS et al (2015) Signal amplification in a microfluidic paper-based analytical device (µ-PAD) by confinement of the fluidic flow. BioChip J. doi:10.​1007/​s13206-015-9204-5
99.
go back to reference Abbas A, Brimer A, Slocik JM et al (2013) Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983. doi:10.1021/ac303567g CrossRef Abbas A, Brimer A, Slocik JM et al (2013) Multifunctional analytical platform on a paper strip: Separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983. doi:10.​1021/​ac303567g CrossRef
100.
101.
go back to reference Jeong S-G, Lee S-H, Choi C-H et al (2015) Toward instrument-free digital measurements: a three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15:1188–1194. doi:10.1039/C4LC01382D CrossRef Jeong S-G, Lee S-H, Choi C-H et al (2015) Toward instrument-free digital measurements: a three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15:1188–1194. doi:10.​1039/​C4LC01382D CrossRef
103.
105.
go back to reference Giokas DL, Tsogas GZ, Vlessidis AG (2014) Programming fluid transport in paper-based micro fluidic devices using razor-crafted open channels Giokas DL, Tsogas GZ, Vlessidis AG (2014) Programming fluid transport in paper-based micro fluidic devices using razor-crafted open channels
107.
go back to reference Barry L, Tinny L, Elain F et al (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip Barry L, Tinny L, Elain F et al (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip
108.
109.
go back to reference Chen H, Cogswell J, Anagnostopoulos C, Faghri M (2012) A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12:2909–2913. doi:10.1039/c2lc20970e CrossRef Chen H, Cogswell J, Anagnostopoulos C, Faghri M (2012) A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12:2909–2913. doi:10.​1039/​c2lc20970e CrossRef
110.
go back to reference Li X, Zwanenburg P, Liu X (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 2609–2614. doi:10.1039/c3lc00006k Li X, Zwanenburg P, Liu X (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 2609–2614. doi:10.​1039/​c3lc00006k
114.
go back to reference Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306. doi:10.1021/ac102392t CrossRef Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306. doi:10.​1021/​ac102392t CrossRef
121.
go back to reference Weaver A, Reiser H, Barstis T et al (2013) Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal Chem 85:6453–6460. doi:10.1021/ac400989p Weaver A, Reiser H, Barstis T et al (2013) Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal Chem 85:6453–6460. doi:10.​1021/​ac400989p
123.
go back to reference Lewis GG, Robbins JS, Phillips ST (2014) A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout. Chem Commun (Camb) 50:5352–5354. doi:10.1039/c3cc47698g CrossRef Lewis GG, Robbins JS, Phillips ST (2014) A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout. Chem Commun (Camb) 50:5352–5354. doi:10.​1039/​c3cc47698g CrossRef
124.
125.
go back to reference Hu C, Bai X, Wang Y et al (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750. doi:10.1021/ac3003243 CrossRef Hu C, Bai X, Wang Y et al (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750. doi:10.​1021/​ac3003243 CrossRef
126.
go back to reference Sarfraz J, Tobjörk D, Österbacka R et al (2012) Low-cost hydrogen sulfide gas sensor on paper substrates: fabrication and demonstration. IEEE Sens J 12:1973–1978CrossRef Sarfraz J, Tobjörk D, Österbacka R et al (2012) Low-cost hydrogen sulfide gas sensor on paper substrates: fabrication and demonstration. IEEE Sens J 12:1973–1978CrossRef
127.
go back to reference Lankelma J, Nie Z, Carrilho E, Whitesides GM (2012) Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem 84:4147–4152CrossRef Lankelma J, Nie Z, Carrilho E, Whitesides GM (2012) Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem 84:4147–4152CrossRef
129.
go back to reference Sevilla F, Alfonso RL, Andres RT (1993) The electrician’s multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry. J Chem Educ 70:580. doi:10.1021/ed070p580 CrossRef Sevilla F, Alfonso RL, Andres RT (1993) The electrician’s multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry. J Chem Educ 70:580. doi:10.​1021/​ed070p580 CrossRef
131.
133.
go back to reference Kim Y, Moon D, Han J (2004) Organic TFT array on a paper substrate. IEEE Electron Device Lett 25:702–704CrossRef Kim Y, Moon D, Han J (2004) Organic TFT array on a paper substrate. IEEE Electron Device Lett 25:702–704CrossRef
134.
142.
go back to reference Ishida K, Masunaga N, Takahashi R et al (2011) User customizable logic paper (UCLP) with sea-of transmission-gates (SOTG) of 2-V organic CMOS and ink-jet printed interconnects. IEEE J Solid-State Circuits 46:285–292. doi:10.1109/JSSC.2010.2074330 CrossRef Ishida K, Masunaga N, Takahashi R et al (2011) User customizable logic paper (UCLP) with sea-of transmission-gates (SOTG) of 2-V organic CMOS and ink-jet printed interconnects. IEEE J Solid-State Circuits 46:285–292. doi:10.​1109/​JSSC.​2010.​2074330 CrossRef
143.
go back to reference Alimenti F, Virili M, Orecchini G et al (2011) A new contactless assembly method for paper substrate antennas and UHF RFID chips. IEEE Trans Microw Theory Tech 59:627–637CrossRef Alimenti F, Virili M, Orecchini G et al (2011) A new contactless assembly method for paper substrate antennas and UHF RFID chips. IEEE Trans Microw Theory Tech 59:627–637CrossRef
144.
145.
go back to reference Yoon B, Ham D, Yarimaga O et al (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497. doi:10.1002/adma.201103471 CrossRef Yoon B, Ham D, Yarimaga O et al (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497. doi:10.​1002/​adma.​201103471 CrossRef
146.
149.
go back to reference Kim J, Park SH, Jeong T et al (2010) Paper as a substrate for inorganic powder electroluminescence devices. IEEE Trans Electron Devices 57:1470–1474CrossRef Kim J, Park SH, Jeong T et al (2010) Paper as a substrate for inorganic powder electroluminescence devices. IEEE Trans Electron Devices 57:1470–1474CrossRef
150.
go back to reference Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12:1768. doi:10.1039/c2lc40126f CrossRef Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12:1768. doi:10.​1039/​c2lc40126f CrossRef
Metadata
Title
Paper as a Substrate for Sensors
Author
Emilia Witkowska Nery
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-28672-3_1

Premium Partners