Skip to main content
Top
Published in: Quantum Information Processing 3/2024

01-03-2024

Parallelized variational quantum classifier with shallow QRAM circuit

Authors: Bojia Duan, Xin Sun, Chang-Yu Hsieh

Published in: Quantum Information Processing | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present a novel quantum variational circuit, harnessing the capabilities of a pre-determined quantum random access memory (QRAM) circuit to enhance machine learning tasks. Our approach enables parallel training on entire datasets, facilitated by QRAM’s streamlined data loading onto qubits through probability amplitudes. This leads to a logarithmic reduction in the qubit width (number of qubits) concerning data dimension and dataset size. Our model is adaptable to various loss functions, rendering it suitable for binary and multi-class classification tasks. To validate our methodology, we conducted numerical simulations using well-established benchmark datasets, Iris and handwritten digits, with the Pennylane platform. Impressively, our approach yielded high classification accuracy in these illustrations. This work demonstrates promising potential for quantum machine learning applications, especially when dealing with large datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)ADSCrossRef Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)ADSCrossRef
2.
go back to reference Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. Royal Soc. A Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)ADSMathSciNet Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. Royal Soc. A Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)ADSMathSciNet
3.
go back to reference Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Physical Rev. Lett. 109(5), 050505 (2012)ADSCrossRef Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Physical Rev. Lett. 109(5), 050505 (2012)ADSCrossRef
4.
go back to reference Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Physical Rev. Lett. 113(13), 130503 (2013)CrossRef Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Physical Rev. Lett. 113(13), 130503 (2013)CrossRef
5.
go back to reference Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Physical Rev. A 96(3), 032301 (2017)ADSCrossRef Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Physical Rev. A 96(3), 032301 (2017)ADSCrossRef
6.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 108–1131 (2014)CrossRef Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 108–1131 (2014)CrossRef
7.
go back to reference Kerenidis, I., Prakash, A.: Quantum Recommendation Systems. In: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), 67, 49–14921 (2017) Kerenidis, I., Prakash, A.: Quantum Recommendation Systems. In: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), 67, 49–14921 (2017)
8.
go back to reference Duan, B., Yuan, J., Yu, C.-H., Huang, J., Hsieh, C.-Y.: A survey on hhl algorithm: From theory to application in quantum machine learning. Phys. Lett. A 384(24), 126595 (2020)MathSciNetCrossRef Duan, B., Yuan, J., Yu, C.-H., Huang, J., Hsieh, C.-Y.: A survey on hhl algorithm: From theory to application in quantum machine learning. Phys. Lett. A 384(24), 126595 (2020)MathSciNetCrossRef
9.
go back to reference Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)CrossRef Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)CrossRef
10.
go back to reference Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)ADSCrossRef Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)ADSCrossRef
11.
go back to reference Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Code/Software sharing not applicable to this article as nocode/software was generated or analysed during the current study.Circuit-centric quantum classifiers. Physical Rev. A 101(3), 032308 (2020) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Code/Software sharing not applicable to this article as nocode/software was generated or analysed during the current study.Circuit-centric quantum classifiers. Physical Rev. A 101(3), 032308 (2020)
12.
go back to reference Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)CrossRef Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)CrossRef
13.
go back to reference Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quant. Inf. 4(1), 65 (2018)ADSCrossRef Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quant. Inf. 4(1), 65 (2018)ADSCrossRef
14.
go back to reference LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Physical Rev. A 102(3), 032420 (2020)ADSCrossRef LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Physical Rev. A 102(3), 032420 (2020)ADSCrossRef
15.
go back to reference Abbas, A., Schuld, M., Petruccione, F.: On quantum ensembles of quantum classifiers. Quant. Mach. Intell. 2, 1–8 (2020) Abbas, A., Schuld, M., Petruccione, F.: On quantum ensembles of quantum classifiers. Quant. Mach. Intell. 2, 1–8 (2020)
16.
go back to reference Adhikary, S.: Entanglement assisted training algorithm for supervised quantum classifiers. Quant. Inf. Proc. 20(8), 254 (2021)MathSciNetCrossRef Adhikary, S.: Entanglement assisted training algorithm for supervised quantum classifiers. Quant. Inf. Proc. 20(8), 254 (2021)MathSciNetCrossRef
17.
go back to reference Fan, L., Situ, H.: Compact data encoding for data re-uploading quantum classifier. Quant. Inf. Proc. 21(3), 87 (2022)MathSciNetCrossRef Fan, L., Situ, H.: Compact data encoding for data re-uploading quantum classifier. Quant. Inf. Proc. 21(3), 87 (2022)MathSciNetCrossRef
18.
go back to reference Bai, Q., Hu, X.: Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification. Quant. Inf. Proc. 22(5), 184 (2023)MathSciNetCrossRef Bai, Q., Hu, X.: Quantity study on a novel quantum neural network with alternately controlled gates for binary image classification. Quant. Inf. Proc. 22(5), 184 (2023)MathSciNetCrossRef
19.
go back to reference Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. arXiv, preprint arXiv:2108.06150 (2021) Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. arXiv, preprint arXiv:​2108.​06150 (2021)
20.
go back to reference Zhang, X.-M., Yung, M.-H., Yuan, X.: Low-depth quantum state preparation. Physical Rev. Res. 3(4), 043200 (2021)ADSCrossRef Zhang, X.-M., Yung, M.-H., Yuan, X.: Low-depth quantum state preparation. Physical Rev. Res. 3(4), 043200 (2021)ADSCrossRef
21.
go back to reference Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N., Yamamoto, N.: Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Physical Rev. Res. 4(2), 023136 (2022)ADSCrossRef Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N., Yamamoto, N.: Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. Physical Rev. Res. 4(2), 023136 (2022)ADSCrossRef
22.
go back to reference Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5 (2005) Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5 (2005)
23.
go back to reference Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. arXiv preprint arXiv:2201.11495 (2022) Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. arXiv preprint arXiv:​2201.​11495 (2022)
24.
go back to reference Johri, S., Debnath, S., Mocherla, A., Singk, A., Prakash, A., Kim, J., Kerenidis, I.: Nearest centroid classification on a trapped ion quantum computer. npj Quant. Inf. 7(1), 1–11 (2021) Johri, S., Debnath, S., Mocherla, A., Singk, A., Prakash, A., Kim, J., Kerenidis, I.: Nearest centroid classification on a trapped ion quantum computer. npj Quant. Inf. 7(1), 1–11 (2021)
25.
go back to reference Araujo, I.F., Park, D.K., Petruccione, F., Silva, A.J.: A divide-and-conquer algorithm for quantum state preparation. Scientific Rep. 11(1), 1–12 (2021) Araujo, I.F., Park, D.K., Petruccione, F., Silva, A.J.: A divide-and-conquer algorithm for quantum state preparation. Scientific Rep. 11(1), 1–12 (2021)
26.
go back to reference Shirakawa, T., Ueda, H., Yunoki, S.: Automatic quantum circuit encoding of a given arbitrary quantum state. arXiv preprint arXiv:2112.14524 (2021) Shirakawa, T., Ueda, H., Yunoki, S.: Automatic quantum circuit encoding of a given arbitrary quantum state. arXiv preprint arXiv:​2112.​14524 (2021)
27.
go back to reference Marin-Sanchez, G., Gonzalez-Conde, J., Sanz, M.: Quantum algorithms for approximate function loading. arXiv preprint arXiv:2111.07933 (2021) Marin-Sanchez, G., Gonzalez-Conde, J., Sanz, M.: Quantum algorithms for approximate function loading. arXiv preprint arXiv:​2111.​07933 (2021)
28.
go back to reference Romero, J., Aspuru-Guzik, A.: Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quant. Technol. 4(1), 2000003 (2021)CrossRef Romero, J., Aspuru-Guzik, A.: Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quant. Technol. 4(1), 2000003 (2021)CrossRef
29.
go back to reference Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning and loading random distributions. npj Quant. Inf. 5(1), 1–9 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning and loading random distributions. npj Quant. Inf. 5(1), 1–9 (2019)
30.
go back to reference Gomez, A.M., Yelin, S.F., Najafi, K.: Reconstructing quantum states using basis-enhanced born machines. arXiv preprint arXiv:2206.01273 (2022) Gomez, A.M., Yelin, S.F., Najafi, K.: Reconstructing quantum states using basis-enhanced born machines. arXiv preprint arXiv:​2206.​01273 (2022)
32.
go back to reference Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Physical Rev. A 78(5), 052310 (2008)ADSCrossRef Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Physical Rev. A 78(5), 052310 (2008)ADSCrossRef
33.
go back to reference Hong, F.-Y., Xiang, Y., Zhu, Z.-Y., Jiang, L.-z., Wu, L.-n.: Robust quantum random access memory. Physical Rev. A 86(1), 010306 (2012) Hong, F.-Y., Xiang, Y., Zhu, Z.-Y., Jiang, L.-z., Wu, L.-n.: Robust quantum random access memory. Physical Rev. A 86(1), 010306 (2012)
34.
go back to reference Hann, C.T., Zou, C.-L., Zhang, Y., Chu, Y., Schoelkopf, R.J., Girvin, S.M., Jiang, L.: Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical Rev. Lett. 123(25), 250501 (2019)ADSCrossRef Hann, C.T., Zou, C.-L., Zhang, Y., Chu, Y., Schoelkopf, R.J., Girvin, S.M., Jiang, L.: Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical Rev. Lett. 123(25), 250501 (2019)ADSCrossRef
35.
go back to reference Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023) Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023)
36.
go back to reference Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. Physical Rev. Lett. 129(23), 230504 (2022)ADSMathSciNetCrossRef Zhang, X.-M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth: Implementations and applications. Physical Rev. Lett. 129(23), 230504 (2022)ADSMathSciNetCrossRef
37.
go back to reference Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Physical Rev. Lett. 128(22), 220505 (2022)ADSMathSciNetCrossRef Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Physical Rev. Lett. 128(22), 220505 (2022)ADSMathSciNetCrossRef
38.
go back to reference Phalak, K., Li, J., Ghosh, S.: Trainable pqc-based qram for quantum storage. IEEE Access (2023) Phalak, K., Li, J., Ghosh, S.: Trainable pqc-based qram for quantum storage. IEEE Access (2023)
39.
40.
go back to reference Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014) Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)
41.
go back to reference Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018) Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., et al.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:​1811.​04968 (2018)
42.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Metadata
Title
Parallelized variational quantum classifier with shallow QRAM circuit
Authors
Bojia Duan
Xin Sun
Chang-Yu Hsieh
Publication date
01-03-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 3/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04295-z

Other articles of this Issue 3/2024

Quantum Information Processing 3/2024 Go to the issue