Skip to main content
Top

2021 | OriginalPaper | Chapter

Pareto Models for Risk Management

Authors : Arthur Charpentier, Emmanuel Flachaire

Published in: Recent Econometric Techniques for Macroeconomic and Financial Data

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Pareto model is very popular in risk management, since simple analytical formulas can be derived for financial downside risk measures (value-at-risk, expected shortfall) or reinsurance premiums and related quantities (large claim index, return period). Nevertheless, in practice, distributions are (strictly) Pareto only in the tails, above (possible very) large threshold. Therefore, it could be interesting to take into account second-order behavior to provide a better fit. In this article, we present how to go from a strict Pareto model to Pareto-type distributions. We discuss inference, derive formulas for various measures and indices, and finally provide applications on insurance losses and financial risks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Gabaix (2009) claimed that similar results can be obtained when exponents are different, unfortunately, this yields only asymptotic power tails, which will be discussed in this chapter.
 
2
\(\overline{F}_{u'}\) is a truncated Pareto distribution, with density equals to \(f(x)/(1-F(u'))\). This property can be observed directly using Eq. (8), where both \(\alpha \) and \(\lambda \) remain unchanged.
Note that this property is quite intuitive, since the GPD distribution appears as a limit for exceeding distributions, and limit in asymptotic results are always fixed points: the Gaussian family is stable by addition (and appears in the Central Limit Theorem) while Fréchet distribution is max-stable (and appears in the first theorem in extreme value theory).
 
3
Historically, extremes were studied through block-maximum—yearly maximum, or maximum of a subgroup of observations. Following Fisher and Tippett (1928), up to some affine transformation, the limiting distribution of the maximum over n i.i.d observations is either Weibull (observations with a bounded support), Gumbel (infinite support, but light tails, like the exponential distribution) or Fréchet (unbounded, with heavy tails, like Pareto distribution). Pickands (1975) and Balkema and de Haan (1974) obtained further that not only the only possible limiting conditional excess distribution is GPD, but also that the distribution of the maximum on subsamples (of same size) should be Fréchet distributed, with the same tail index \(\gamma \), if \(\gamma >0\). For instance in the USA, if the distribution of maximum income per county is Fréchet with parameter \(\gamma \) (and if county had identical sizes), then the conditional excess distribution function of incomes above a high threshold is a GPD distribution with the same tail index \(\gamma \).
 
4
The quantile function U is defined as \(U(x)=F^{-1}(1-1/x)\).
 
5
Using the expansion \((1+y^a)^b \approx 1+b y^a\), for small \(y^a\), in (22) yields (20).
 
6
Albrecher et al. (2017, Sect. 4.6) give an approximation, based on \((1+\delta -\delta y^\tau )^{-\alpha }\approx 1-\alpha \delta +\alpha \delta y^\tau \), which can be very poor. Thus, we do not recommend to use it.
 
7
Even if Hill estimator can be can be seen as a Maximum Likehood estimator, for some properly chosen distribution.
 
8
Given a sample \(\lbrace x_1,\ldots ,x_n \rbrace \), let \(\lbrace x_{1:n},\ldots ,x_{n:n} \rbrace \) denote the ordered version, with \(x_{1:n}=\min \lbrace x_1,\ldots ,x_n\rbrace \), \(x_{n:n}=\max \lbrace x_1,\ldots ,x_n\rbrace \) and \(x_{1:n}\le \ldots x_{n-1:n}\le x_{n:n} \).
 
9
The study of the limiting distribution of the maximum of a sample of size n made us introduce a normalizing sequence \(a_n\). Here, a continuous version is considered—with U(t) instead of U(n)—and the sequence \(a_n\) becomes the auxiliary function a(t).
 
10
See the R packages ReIns or TopIncomes.
 
11
It is the danishuni dataset in the CASdatasets package, available from http://​cas.​uqam.​ca/​.
 
Literature
go back to reference Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. Wiley series in probability and statistics. Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. Wiley series in probability and statistics.
go back to reference Arnold, B. C. (2008). Pareto and generalized Pareto distributions. In D. Chotikapanich (Ed.), Modeling income distributions and Lorenz curves (Chap. 7, pp. 119–146). New York: Springer. Arnold, B. C. (2008). Pareto and generalized Pareto distributions. In D. Chotikapanich (Ed.), Modeling income distributions and Lorenz curves (Chap. 7, pp. 119–146). New York: Springer.
go back to reference Balkema, A., & de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.CrossRef Balkema, A., & de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.CrossRef
go back to reference Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley series in probability and statistics. Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley series in probability and statistics.
go back to reference Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.CrossRef Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.CrossRef
go back to reference Beirlant, J., & Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11(1), 17–29. Beirlant, J., & Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11(1), 17–29.
go back to reference Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press. Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press.
go back to reference Cebrián, A. C., Denuit, M., & Lambert, P. (2003). Generalized Pareto fit to the society of actuaries’ large claims database. North American Actuarial Journal, 7(3), 18–36.CrossRef Cebrián, A. C., Denuit, M., & Lambert, P. (2003). Generalized Pareto fit to the society of actuaries’ large claims database. North American Actuarial Journal, 7(3), 18–36.CrossRef
go back to reference Charpentier, A., & Flachaire, E. (2019). Pareto models for top incomes. hal id: hal-02145024. Charpentier, A., & Flachaire, E. (2019). Pareto models for top incomes. hal id: hal-02145024.
go back to reference Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press. Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press.
go back to reference de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering. de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering.
go back to reference de Haan, L., & Stadtmüller, U. (1996). Generalized regular variation of second order. Journal of the Australian Mathematical Society, 61, 381–395.CrossRef de Haan, L., & Stadtmüller, U. (1996). Generalized regular variation of second order. Journal of the Australian Mathematical Society, 61, 381–395.CrossRef
go back to reference Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer.CrossRef Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer.CrossRef
go back to reference Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.CrossRef Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.CrossRef
go back to reference Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.CrossRef Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.CrossRef
go back to reference Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120(8), 1492–1517.CrossRef Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120(8), 1492–1517.CrossRef
go back to reference Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44(3), 423–453.CrossRef Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44(3), 423–453.CrossRef
go back to reference Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails (pp. 436–459). Basel: Birkhäuser. Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails (pp. 436–459). Basel: Birkhäuser.
go back to reference Guess, F., & Proschan, F. (1988). 12 mean residual life: Theory and applications. In Quality control and reliability. Handbook of statistics (Vol. 7, pp. 215–224). Amsterdam: Elsevier. Guess, F., & Proschan, F. (1988). 12 mean residual life: Theory and applications. In Quality control and reliability. Handbook of statistics (Vol. 7, pp. 215–224). Amsterdam: Elsevier.
go back to reference Hagstroem, K. G. (1925). La loi de pareto et la reassurance. Skandinavisk Aktuarietidskrift, 25. Hagstroem, K. G. (1925). La loi de pareto et la reassurance. Skandinavisk Aktuarietidskrift, 25.
go back to reference Hagstroem, K. G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 60(1–2), 59–71.CrossRef Hagstroem, K. G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 60(1–2), 59–71.CrossRef
go back to reference Hall, P. (1982). On some simple estimate of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44, 37–42. Hall, P. (1982). On some simple estimate of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44, 37–42.
go back to reference Jessen, A. H., & Mikosch, T. (2006). Regularly varying functions. Publications de l’Institut Mathématique, 19, 171–192.CrossRef Jessen, A. H., & Mikosch, T. (2006). Regularly varying functions. Publications de l’Institut Mathématique, 19, 171–192.CrossRef
go back to reference Klüppelberg, C. (2004). Risk management with extreme value theory. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment (Chap. 3, pp. 101–168). Oxford: Chapman & Hall/CRC. Klüppelberg, C. (2004). Risk management with extreme value theory. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment (Chap. 3, pp. 101–168). Oxford: Chapman & Hall/CRC.
go back to reference Kremer, E. (1984). Rating of non proportional reinsurance treaties based on ordered claims (pp. 285–314). Dordrecht: Springer. Kremer, E. (1984). Rating of non proportional reinsurance treaties based on ordered claims (pp. 285–314). Dordrecht: Springer.
go back to reference Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.CrossRef Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.CrossRef
go back to reference McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin, 27(27), 117–137.CrossRef McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin, 27(27), 117–137.CrossRef
go back to reference McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3), 271–300. Special issue on Risk Management. McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3), 271–300. Special issue on Risk Management.
go back to reference O’Brien, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. Journal of Applied Probability, 17(2), 539–545.CrossRef O’Brien, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. Journal of Applied Probability, 17(2), 539–545.CrossRef
go back to reference Pareto, V. (1895). La legge della domanda. In Pareto (Ed.), Ecrits d’économie politique pure (Chap. 11, pp. 295–304). Genève: Librairie Droz. Pareto, V. (1895). La legge della domanda. In Pareto (Ed.), Ecrits d’économie politique pure (Chap. 11, pp. 295–304). Genève: Librairie Droz.
go back to reference Peng, L., & Qi, Y. (2004). Estimating the first- and second-order parameters of a heavy-tailed distribution. Australian & New Zealand Journal of Statistics, 46, 305–312.CrossRef Peng, L., & Qi, Y. (2004). Estimating the first- and second-order parameters of a heavy-tailed distribution. Australian & New Zealand Journal of Statistics, 46, 305–312.CrossRef
go back to reference Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 23, 119–131. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 23, 119–131.
go back to reference Resnick, S. (2007). Heavy-tail phenomena: Probabilistic and statistical modeling (Vol. 10). New York: Springer. Resnick, S. (2007). Heavy-tail phenomena: Probabilistic and statistical modeling (Vol. 10). New York: Springer.
go back to reference Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151.CrossRef Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151.CrossRef
go back to reference Reynkens, T. (2018). ReIns: Functions from “Reinsurance: Actuarial and statistical aspects”. R package version 1.0.8. Reynkens, T. (2018). ReIns: Functions from “Reinsurance: Actuarial and statistical aspects”. R package version 1.0.8.
go back to reference Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507–554. Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507–554.
go back to reference Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.CrossRef Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.CrossRef
go back to reference Schumpeter, J. A. (1949). Vilfredo Pareto (1848–1923). The Quarterly Journal of Economics, 63(2), 147–173.CrossRef Schumpeter, J. A. (1949). Vilfredo Pareto (1848–1923). The Quarterly Journal of Economics, 63(2), 147–173.CrossRef
go back to reference Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20–33.CrossRef Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20–33.CrossRef
go back to reference Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207. Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207.
go back to reference Vajda, S. (1951). Analytical studies in stop-loss reinsurance. Scandinavian Actuarial Journal, 1951(1–2), 158–175.CrossRef Vajda, S. (1951). Analytical studies in stop-loss reinsurance. Scandinavian Actuarial Journal, 1951(1–2), 158–175.CrossRef
Metadata
Title
Pareto Models for Risk Management
Authors
Arthur Charpentier
Emmanuel Flachaire
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-54252-8_14