Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Partial Regularity for the 3D Navier–Stokes Equations

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

These notes give a relatively quick introduction to some of the main results for the three-dimensional Navier–Stokes equations, concentrating in particular on ‘partial regularity’ results that limit the size of the set of (potential) singularities, both in time and in space-time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This is a particular case of the very useful anti-symmetry property
$$\displaystyle \begin{aligned} \langle(u\cdot\nabla)v,w\rangle=-\langle(u\cdot\nabla)w,v\rangle, \end{aligned} $$
(2.4)
which we will use from time to time in what follows.
 
2
Leray’s 1934 paper treats the equations on the whole space and does not use the Galerkin approach (see Ożański and Pooley [25], for a modern treatment of the methods in his paper). A ‘Galerkin-like’ argument for the equations on the whole space can be found in the book by Chemin et al. [4]. The first proof of existence of solutions on bounded domains was due to Hopf [17].
 
3
A more careful argument proceeds by contradiction: if (2.19) does not hold then ∥∇u(t)∥4 <  RHS of (2.19). In this case it follows from (2.17) that a strong solution v with v(t) = u(t) exists on the time interval [t, t j] and ∥∇v(t j)∥ < ∥∇u(t j)∥. But by weak-strong uniqueness we must have u = v on [t, t j], which yields a contradiction.
 
4
Here we use a colon for the matrix product, i.e. \(A:B=\sum _{i,j=1}^3A_{ij}B_{ij}\).
 
5
The vorticity equation follows on taking the curl of the Navier–Stokes equations and using the two vector identities
$$\displaystyle \begin{aligned}\frac{1}{2}{\nabla}|u|{}^2=(u\cdot{\nabla})u+u\times\omega\quad \mbox{and}\quad \nabla\times(a\times b)=a(\nabla\cdot b)-b(\nabla\cdot a)+(b\cdot{\nabla})a-(a\cdot{\nabla})b \end{aligned}$$
along with the fact that both u and ω are divergence free.
 
6
This is the basis of the proof given in the paper by Takahashi [39], although rather than following exactly the argument here he works with the equation for ϕω, where ϕ is a cutoff function.
 
7
Here our argument has what is potentially a fatal flaw: in the inequality (2.42) we have assumed that ω ∈ L r, which is in fact what we want to prove (the inequality is trivially true if ωL r since then both sides are infinite). However, this can be circumvented by considering estimates for the equation
$$\displaystyle \begin{aligned}\partial_tW^\varepsilon-\Delta W^\varepsilon=\mathrm{div}(W^\varepsilon u_\varepsilon-u_\varepsilon W^\varepsilon), \end{aligned}$$
where u ε is a mollified version of the original function u, and then taking limits as ε → 0.
 
8
Wojciech Ożański recently remarked to me that the pressure term usually included in hypothesis (A n) (as in CKN or RRS, for example) is not in fact necessary: the pressure estimates required in the course of the proof rely only on the estimates for u in our (2.50) and (2.51) and on the initial smallness assumption on p in (2.44). A very elegant version of the full inductive argument, including the pressure, is presented in his monograph [24]).
 
9
We define \(\langle f,g\rangle _{H^2}=\sum _k (1+|k|{ }^2)^2\hat f_k\hat g_k\).
 
Literature
1.
go back to reference T. Buckmaster, V. Vicol, Nonuniquenness of weak solutions to the Navier–Stokes equation. arXiv:1709.10033 (2017) T. Buckmaster, V. Vicol, Nonuniquenness of weak solutions to the Navier–Stokes equation. arXiv:1709.10033 (2017)
2.
go back to reference T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., V. Vicol, Onsager’s conjecture for admissible weak solutions. arXiv:1701.08678 (2017) T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., V. Vicol, Onsager’s conjecture for admissible weak solutions. arXiv:1701.08678 (2017)
3.
go back to reference L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure. Appl. Math. 35, 771–931 (1982)MathSciNetCrossRef L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure. Appl. Math. 35, 771–931 (1982)MathSciNetCrossRef
4.
go back to reference J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geophysics (Oxford University Press, Oxford, 2006)MATH J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geophysics (Oxford University Press, Oxford, 2006)MATH
5.
go back to reference P. Constantin, C. Foias, Navier–Stokes Equations (University of Chicago Press, Chicago, 1988)MATH P. Constantin, C. Foias, Navier–Stokes Equations (University of Chicago Press, Chicago, 1988)MATH
6.
go back to reference P. Constantin, E. Weinan, E.S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)MathSciNetCrossRef P. Constantin, E. Weinan, E.S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)MathSciNetCrossRef
7.
go back to reference M. Dashti, J.C. Robinson, A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations. Nonlinearity 22, 735–746 (2009)MathSciNetCrossRef M. Dashti, J.C. Robinson, A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations. Nonlinearity 22, 735–746 (2009)MathSciNetCrossRef
8.
go back to reference L. Escauriaza, G. Seregin, V. Šverák, L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)MathSciNetCrossRef L. Escauriaza, G. Seregin, V. Šverák, L 3,-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)MathSciNetCrossRef
9.
go back to reference L.C. Evans, Partial Differential Equations (American Mathematical Society, Providence, 2010)MATH L.C. Evans, Partial Differential Equations (American Mathematical Society, Providence, 2010)MATH
10.
go back to reference E.B. Fabes, B.F. Jones, N.M. Rivière, The initial value problem for the Navier–Stokes equations with data in L p. Arch. Ration. Mech. Anal. 45, 222–240 (1972)MathSciNetCrossRef E.B. Fabes, B.F. Jones, N.M. Rivière, The initial value problem for the Navier–Stokes equations with data in L p. Arch. Ration. Mech. Anal. 45, 222–240 (1972)MathSciNetCrossRef
11.
12.
go back to reference C.L. Fefferman, Existence and smoothness of the Navier–Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2000), pp. 57–67 C.L. Fefferman, Existence and smoothness of the Navier–Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2000), pp. 57–67
13.
go back to reference C. Foias, C. Guillopé, R. Temam, New a priori estimates for Navier–Stokes equations in dimension 3. Comm. Partial Diff. Equ. 6, 329–359 (1981)MathSciNetCrossRef C. Foias, C. Guillopé, R. Temam, New a priori estimates for Navier–Stokes equations in dimension 3. Comm. Partial Diff. Equ. 6, 329–359 (1981)MathSciNetCrossRef
14.
15.
go back to reference G.P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem, in ed. by G.P. Galdi, J.G. Heywood, R. Rannacher. Fundamental Directions in Mathematical Fluid Dynamics (Birkhäuser, Basel, 2000), pp. 1–70 G.P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem, in ed. by G.P. Galdi, J.G. Heywood, R. Rannacher. Fundamental Directions in Mathematical Fluid Dynamics (Birkhäuser, Basel, 2000), pp. 1–70
16.
go back to reference P. Hartman, Ordinary Differential Equations (Wiley, Baltimore, 1973)MATH P. Hartman, Ordinary Differential Equations (Wiley, Baltimore, 1973)MATH
17.
19.
go back to reference H. Jia, V. Šverák, Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Func. Anal. 268, 3734–3766 (2015)MathSciNetCrossRef H. Jia, V. Šverák, Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Func. Anal. 268, 3734–3766 (2015)MathSciNetCrossRef
20.
go back to reference I. Kukavica, Partial regularity results for solutions of the Navier–Stokes system, in ed. by J.C. Robinson, J.L. Rodrigo, Partial Differential Equations and Fluid Mechanics (Cambridge University Press, Cambridge, 2009), pp. 121–145 I. Kukavica, Partial regularity results for solutions of the Navier–Stokes system, in ed. by J.C. Robinson, J.L. Rodrigo, Partial Differential Equations and Fluid Mechanics (Cambridge University Press, Cambridge, 2009), pp. 121–145
21.
go back to reference I. Kukavica, The fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearity 22, 2889–2900 (2009)MathSciNetCrossRef I. Kukavica, The fractal dimension of the singular set for solutions of the Navier–Stokes system. Nonlinearity 22, 2889–2900 (2009)MathSciNetCrossRef
22.
23.
24.
go back to reference W. Ożański, The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and Its Sharpness. Lecture Notes in Mathematical Fluid Mechanics (Birkhäuser/Springer, 2019) W. Ożański, The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and Its Sharpness. Lecture Notes in Mathematical Fluid Mechanics (Birkhäuser/Springer, 2019)
25.
go back to reference W. Ożański, B. Pooley, Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquid visqueux emplissant l’espace”. in ed. by C.L. Fefferman, J.L. Rodrigo, J.C. Robinson. Partial Differential Equations in Fluid Mechanics. LMS Lecture Notes (Cambridge University Press, Cambridge, 2018) W. Ożański, B. Pooley, Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquid visqueux emplissant l’espace”. in ed. by C.L. Fefferman, J.L. Rodrigo, J.C. Robinson. Partial Differential Equations in Fluid Mechanics. LMS Lecture Notes (Cambridge University Press, Cambridge, 2018)
27.
go back to reference J.C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge University Press, Cambridge, 2001)CrossRef J.C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge University Press, Cambridge, 2001)CrossRef
28.
go back to reference J.C. Robinson, Dimensions, Embeddings, and Attractors (Cambridge University Press, Cambridge, 2011)MATH J.C. Robinson, Dimensions, Embeddings, and Attractors (Cambridge University Press, Cambridge, 2011)MATH
29.
go back to reference J.C. Robinson, W. Sadowski, Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations. Nonlinearity 20, 1185–1191 (2007)MathSciNetCrossRef J.C. Robinson, W. Sadowski, Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations. Nonlinearity 20, 1185–1191 (2007)MathSciNetCrossRef
30.
go back to reference J.C. Robinson, W. Sadowski, Almost everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations. Nonlinearity 22, 2093–2099 (2009)MathSciNetCrossRef J.C. Robinson, W. Sadowski, Almost everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations. Nonlinearity 22, 2093–2099 (2009)MathSciNetCrossRef
31.
go back to reference J.C. Robinson, J.L. Rodrigo, W. Sadowski, The Three-Dimensional Navier–Stokes Equations (Cambridge University Press, Cambridge, 2016)CrossRef J.C. Robinson, J.L. Rodrigo, W. Sadowski, The Three-Dimensional Navier–Stokes Equations (Cambridge University Press, Cambridge, 2016)CrossRef
32.
go back to reference V. Scheffer, Turbulence and Hausdorff dimension, in Turbulence and Navier–Stokes Equation, Orsay 1975. Springer Lecture Notes in Mathematics, vol. 565 (Springer, Berlin, 1976), pp. 174–183 V. Scheffer, Turbulence and Hausdorff dimension, in Turbulence and Navier–Stokes Equation, Orsay 1975. Springer Lecture Notes in Mathematics, vol. 565 (Springer, Berlin, 1976), pp. 174–183
33.
go back to reference V. Scheffer, Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math. 66, 535–552 (1976)MathSciNetCrossRef V. Scheffer, Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math. 66, 535–552 (1976)MathSciNetCrossRef
34.
36.
go back to reference V. Scheffer, Nearly one-dimensional singularities of solutions to the Navier–Stokes inequality. Comm. Math. Phys. 110, 525–551 (1987)MathSciNetCrossRef V. Scheffer, Nearly one-dimensional singularities of solutions to the Navier–Stokes inequality. Comm. Math. Phys. 110, 525–551 (1987)MathSciNetCrossRef
37.
go back to reference J. Serrin, On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)MathSciNetCrossRef J. Serrin, On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)MathSciNetCrossRef
38.
go back to reference M. Struwe, On partial regularity result for the Navier–Stokes equations. Comm. Pure Appl. Math. 41, 437–458 (1988)MathSciNetCrossRef M. Struwe, On partial regularity result for the Navier–Stokes equations. Comm. Pure Appl. Math. 41, 437–458 (1988)MathSciNetCrossRef
39.
go back to reference S. Takahashi, On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscripta Math. 69, 237–254 (1990)MathSciNetCrossRef S. Takahashi, On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscripta Math. 69, 237–254 (1990)MathSciNetCrossRef
Metadata
Title
Partial Regularity for the 3D Navier–Stokes Equations
Author
James C. Robinson
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36226-3_2

Premium Partner