Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 1/2021

01-01-2021 | APPLIED PROBLEMS

Partially Supervised Kernel Induced Rough Fuzzy Clustering for Brain Tissue Segmentation

Authors: Nur Alom Talukdar, Anindya Halder

Published in: Pattern Recognition and Image Analysis | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In modern imaging diagnosis Magnetic Resonance Imaging (MRI) is possibly one of the widely used effective techniques particularly for brain tissue segmentation. Clustering techniques may not be perfect always. Clustering can be significantly improved by supervising partially. A novel partially supervised kernel induced rough fuzzy clustering is proposed for brain tissue segmentation by employing a small quantity of labeled pixels with constraint seeded policy. Labeled pixels act as the constraints which are utilized to initialize the clustering process and guide the method towards a more accurate partitioning. Kernel trick used here enhances the possibility of linear partition of different complex segments of brain which cannot separate linearly in its original feature space. Whereas, the rough and fuzzy set handles the overlappingness, vagueness and indiscernibility of different tissue regions. A variety of benchmark brain MRI datasets are used for the experiments. The ability of the method is compared with state-of-the-art clustering segmentation techniques and evaluated using different validity indices. Experimental results confirm that the technique considerably enhances the segmentation accuracy with a little quantity of supervision. Enhancement in accuracy gained by the method compared to the other techniques are 0.3, 0.37, 1.15, and 1.03% for IBSR datasets 144, 150, 155, and 167, respectively, and 1.02% for the BrainWeb dataset 85. Statistical impact of the method is confirmed from the paired t-test results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. C. Wittrock, The Brain and Psychology (Academic Press, 1980). M. C. Wittrock, The Brain and Psychology (Academic Press, 1980).
2.
go back to reference T. W. Vanderah and D. J. Gould, Nolte’s The Human Brain: An Introduction to Its Functional Anatomy, 7th ed. (Elsevier, 2015). T. W. Vanderah and D. J. Gould, Nolte’s The Human Brain: An Introduction to Its Functional Anatomy, 7th ed. (Elsevier, 2015).
3.
go back to reference Mayfield Education and Research Foundation. Anatomy of the Brain. http://www.mayfieldclinic.com/pe-anatbrain.htm. Accessed March 24, 2020. Mayfield Education and Research Foundation. Anatomy of the Brain. http://​www.​mayfieldclinic.​com/​pe-anatbrain.​htm.​ Accessed March 24, 2020.
4.
go back to reference L. M. Biga, S. Dawson, A. Harwell, R. Hopkins, J. Kaufmann, M. Le Master, P. Matern, D. Quick, K. M. Graham, and J. Runyeon, Anatomy and Physiology. https://openstax.org/details/books/anatomy-and-physiology. Accessed March 24, 2020. L. M. Biga, S. Dawson, A. Harwell, R. Hopkins, J. Kaufmann, M. Le Master, P. Matern, D. Quick, K. M. Graham, and J. Runyeon, Anatomy and Physiology. https://​openstax.​org/​details/​books/​anatomy-and-physiology.​ Accessed March 24, 2020.
5.
go back to reference P. Suetens, Fundamentals of Medical Imaging (Cambridge Univ. Press, Cambridge, UK, 2002). P. Suetens, Fundamentals of Medical Imaging (Cambridge Univ. Press, Cambridge, UK, 2002).
6.
7.
go back to reference S. Bauer, R. Wiest, L. P. Nolte, and M. Reyes, “A survey of MRI based medical image analysis for brain tumor studies,” Phys. Med. Biol. 58 (13), 97–129 (2013).CrossRef S. Bauer, R. Wiest, L. P. Nolte, and M. Reyes, “A survey of MRI based medical image analysis for brain tumor studies,” Phys. Med. Biol. 58 (13), 97–129 (2013).CrossRef
8.
go back to reference P. Maji and S. K. Pal, Rough-Fuzzy Pattern Recognition: Applications in Bioinformatics and Medical Imaging (John Wiley & Sons, Inc., New Jersey and Canada, 2012).CrossRef P. Maji and S. K. Pal, Rough-Fuzzy Pattern Recognition: Applications in Bioinformatics and Medical Imaging (John Wiley & Sons, Inc., New Jersey and Canada, 2012).CrossRef
9.
go back to reference D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, Positron-Emission Tomography: Basic Sciences (Springer-Verlag, Secaucus, 2005).CrossRef D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, Positron-Emission Tomography: Basic Sciences (Springer-Verlag, Secaucus, 2005).CrossRef
10.
go back to reference A. M. Cormack and G. N. Hounsfield, The Nobel Prize in Physiology or Medicine for the Development of Computer-Assisted Tomography. https://www.nobelprize.org/1979. Accessed March 24, 2020. A. M. Cormack and G. N. Hounsfield, The Nobel Prize in Physiology or Medicine for the Development of Computer-Assisted Tomography. https://​www.​nobelprize.​org/​1979.​ Accessed March 24, 2020.
11.
go back to reference Single-Photon Emission-Computed Tomography. http://id.nlm.nih.gov/mesh/D015899. Accessed March 24, 2020. Single-Photon Emission-Computed Tomography. http://​id.​nlm.​nih.​gov/​mesh/​D015899.​ Accessed March 24, 2020.
12.
go back to reference R. J. English, SPECT: A Primer, 3rd ed. (Soc. Nucl. Med., CNMT, Reston, 2005). R. J. English, SPECT: A Primer, 3rd ed. (Soc. Nucl. Med., CNMT, Reston, 2005).
13.
go back to reference N. P. Alazraki, M. J. Shumate, and D. A. Kooby, A Clinicians Guide to Nuclear Oncology (Soc. Nucl. Med. Mol. Imaging, Reston, 2007). N. P. Alazraki, M. J. Shumate, and D. A. Kooby, A Clinicians Guide to Nuclear Oncology (Soc. Nucl. Med. Mol. Imaging, Reston, 2007).
14.
go back to reference National Research Council (US) and the Institute of Medicine (US) Committee, Mathematics and Physics of Emerging Dynamic Biomedical Imaging (Natl. Acad. Press, Washington D.C., 1996). National Research Council (US) and the Institute of Medicine (US) Committee, Mathematics and Physics of Emerging Dynamic Biomedical Imaging (Natl. Acad. Press, Washington D.C., 1996).
15.
go back to reference M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor, “Review of brain MRI image segmentation methods,” Artif. Intell. Rev. 33 (4), 261–274 (2010).CrossRef M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor, “Review of brain MRI image segmentation methods,” Artif. Intell. Rev. 33 (4), 261–274 (2010).CrossRef
16.
go back to reference C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer Verlag, New York, 2006).MATH C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer Verlag, New York, 2006).MATH
17.
go back to reference R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson Prentice Hall, 2007). R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson Prentice Hall, 2007).
18.
go back to reference S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic Press, New York, 2009).MATH S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. (Academic Press, New York, 2009).MATH
19.
go back to reference H. R. Singleton and G. M. Pohost, “Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods,” Magn. Reson. Med. 37 (3), 418–424 (1997).CrossRef H. R. Singleton and G. M. Pohost, “Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods,” Magn. Reson. Med. 37 (3), 418–424 (1997).CrossRef
20.
go back to reference I. N. Manousakes, P. E. Undrill, and G. G. Cameron, “Split and merge segmentation of magnetic resonance medical images: Performance evaluation and extension to three dimensions,” Comput. Biomed. Res. 31 (6), 393–412 (1998).CrossRef I. N. Manousakes, P. E. Undrill, and G. G. Cameron, “Split and merge segmentation of magnetic resonance medical images: Performance evaluation and extension to three dimensions,” Comput. Biomed. Res. 31 (6), 393–412 (1998).CrossRef
21.
go back to reference B. N. Subudhi, V. Thangaraj, E. Sankaralingam, and A. Ghosh, “Tumor or abnormality identification from magnetic resonance images using statistical region fusion based segmentation,” Magn. Reson. Imaging 34 (9), 1292–1304 (2016).CrossRef B. N. Subudhi, V. Thangaraj, E. Sankaralingam, and A. Ghosh, “Tumor or abnormality identification from magnetic resonance images using statistical region fusion based segmentation,” Magn. Reson. Imaging 34 (9), 1292–1304 (2016).CrossRef
22.
go back to reference S. Banerjee, S. Mitra, and B. Umashankar, “Single seed delineation of brain tumor using multi-thresholding,” Inf. Sci. 330 (4), 88–103 (2016).CrossRef S. Banerjee, S. Mitra, and B. Umashankar, “Single seed delineation of brain tumor using multi-thresholding,” Inf. Sci. 330 (4), 88–103 (2016).CrossRef
23.
go back to reference J. C. Rajapakse, J. N. Giedd, and J. L. Rapoport, “Statistical approach to segmentation of single channel cerebral MR images,” IEEE Trans. Med. Imaging 16 (2), 176–186 (1997).CrossRef J. C. Rajapakse, J. N. Giedd, and J. L. Rapoport, “Statistical approach to segmentation of single channel cerebral MR images,” IEEE Trans. Med. Imaging 16 (2), 176–186 (1997).CrossRef
24.
go back to reference A. Banerjee and P. Maji, “Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images,” Appl. Soft Comput. 46, 558–576 (2016).CrossRef A. Banerjee and P. Maji, “Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images,” Appl. Soft Comput. 46, 558–576 (2016).CrossRef
25.
go back to reference S. Saha and S. Bandyopadhyay, “MRI brain image segmentation by fuzzy symmetry based genetic clustering technique,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2007), pp. 4417–4424. S. Saha and S. Bandyopadhyay, “MRI brain image segmentation by fuzzy symmetry based genetic clustering technique,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2007), pp. 4417–4424.
26.
go back to reference P. Maji and S. Roy, “Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation,” PLOS ONE 10 (4), 1–30 (2015).CrossRef P. Maji and S. Roy, “Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation,” PLOS ONE 10 (4), 1–30 (2015).CrossRef
27.
go back to reference G. Vishnuvarthanana, M. P. Rajasekaran, P. Subbaraj, and A. Vishnuvarthanan, “An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images,” Appl. Soft Comput. 38, 190–212 (2016).CrossRef G. Vishnuvarthanana, M. P. Rajasekaran, P. Subbaraj, and A. Vishnuvarthanan, “An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images,” Appl. Soft Comput. 38, 190–212 (2016).CrossRef
28.
go back to reference J. P. Sarkara, I. Saha, and U. Maulik, “Rough possibilistic type-2 fuzzy c-means clustering for MR brain image segmentation,” Appl. Soft Comput. 46, 527–536 (2016).CrossRef J. P. Sarkara, I. Saha, and U. Maulik, “Rough possibilistic type-2 fuzzy c-means clustering for MR brain image segmentation,” Appl. Soft Comput. 46, 527–536 (2016).CrossRef
29.
go back to reference S. Ravishankar and Y. Bresler, “MR image reconstruction from highly under sampledk-space data by dictionary learning,” IEEE Trans. Med. Imaging 30 (5), 1028–1041 (2011).CrossRef S. Ravishankar and Y. Bresler, “MR image reconstruction from highly under sampledk-space data by dictionary learning,” IEEE Trans. Med. Imaging 30 (5), 1028–1041 (2011).CrossRef
30.
go back to reference E. S. A. E. Dahshan, H. M. Mohsen, K. Revett, and A. B. M. Salem, “Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm,” Expert Syst. Appl. 41 (11), 5526–5545 (2014).CrossRef E. S. A. E. Dahshan, H. M. Mohsen, K. Revett, and A. B. M. Salem, “Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm,” Expert Syst. Appl. 41 (11), 5526–5545 (2014).CrossRef
31.
go back to reference J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan, “A survey of MRI based brain tumor segmentation methods,” Tsinghua Sci. Technol. 19 (6), 578–595 (2014).MathSciNetCrossRef J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan, “A survey of MRI based brain tumor segmentation methods,” Tsinghua Sci. Technol. 19 (6), 578–595 (2014).MathSciNetCrossRef
32.
go back to reference N. Gordillo, E. Montseny, and P. Sobrevilla, “State of the art survey on MRI brain tumor segmentation,” Magn. Reson. Imaging 31 (8), 1426–1438 (2013).CrossRef N. Gordillo, E. Montseny, and P. Sobrevilla, “State of the art survey on MRI brain tumor segmentation,” Magn. Reson. Imaging 31 (8), 1426–1438 (2013).CrossRef
33.
go back to reference N. Grira, M. Crucianu, and N. Boujemaa, Unsupervised and Semi-Supervised Clustering: A Brief Survey. Technical Report B.P. 105 (INRIA Rocquencourt, 2005). N. Grira, M. Crucianu, and N. Boujemaa, Unsupervised and Semi-Supervised Clustering: A Brief Survey. Technical Report B.P. 105 (INRIA Rocquencourt, 2005).
34.
go back to reference X. Zhu, Semi-Supervised Learning Literature Survey. Technical Report Computer Sciences TR 1530 (Univ. Wisconsin-Madison, 2008). X. Zhu, Semi-Supervised Learning Literature Survey. Technical Report Computer Sciences TR 1530 (Univ. Wisconsin-Madison, 2008).
35.
go back to reference S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised clustering by seeding,” in Proceedings of the 19th International Conference on Machine Learning (2002), pp. 19–26. S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised clustering by seeding,” in Proceedings of the 19th International Conference on Machine Learning (2002), pp. 19–26.
36.
go back to reference S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision for pairwise constrained clustering,” in Proceedings of the SIAM International Conference on Data Mining (2004), pp. 333–344. S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision for pairwise constrained clustering,” in Proceedings of the SIAM International Conference on Data Mining (2004), pp. 333–344.
37.
go back to reference L. H. Son and T. M. Tuan, “Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints,” Eng. Appl. Artif. Intell. 59, 186–195 (2017).CrossRef L. H. Son and T. M. Tuan, “Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints,” Eng. Appl. Artif. Intell. 59, 186–195 (2017).CrossRef
38.
go back to reference S. Saha, A. K. Alok, and A. Ekbal, “Brain image segmentation using semi-supervised clustering,” Expert Syst. Appl. 52, 50–63 (2016).CrossRef S. Saha, A. K. Alok, and A. Ekbal, “Brain image segmentation using semi-supervised clustering,” Expert Syst. Appl. 52, 50–63 (2016).CrossRef
39.
go back to reference A. Halder and N. A. Talukdar, “Brain tissue segmentation using improved kernelized rough-fuzzy c-means with spatio-contextual information from MRI,” Magn. Reson. Imaging 62, 129–151 (2019).CrossRef A. Halder and N. A. Talukdar, “Brain tissue segmentation using improved kernelized rough-fuzzy c-means with spatio-contextual information from MRI,” Magn. Reson. Imaging 62, 129–151 (2019).CrossRef
40.
go back to reference B. Scholkopf and A. J. Smol, Learning with Kernels (MIT Press, Cambridge, 2002). B. Scholkopf and A. J. Smol, Learning with Kernels (MIT Press, Cambridge, 2002).
41.
go back to reference J. S. Taylor and N. Cristianini, Kernel Method for Pattern Analysis (Cambridge Univ. Press, 2004).CrossRef J. S. Taylor and N. Cristianini, Kernel Method for Pattern Analysis (Cambridge Univ. Press, 2004).CrossRef
43.
44.
go back to reference Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data (Kluwer, Dordrecht, 1991).MATHCrossRef Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data (Kluwer, Dordrecht, 1991).MATHCrossRef
45.
go back to reference J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Comput. Geosci. 10 (2–3), 191–203 (1984).CrossRef J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Comput. Geosci. 10 (2–3), 191–203 (1984).CrossRef
46.
go back to reference L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. Bezdek, “A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain,” IEEE Trans. Neural Networks 3 (5), 672–682 (1993).CrossRef L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. Bezdek, “A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain,” IEEE Trans. Neural Networks 3 (5), 672–682 (1993).CrossRef
47.
48.
go back to reference D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans, “Design and construction of a realistic digital brain phantom,” IEEE Trans. Med. Imaging 17 (3), 463–468 (1998).CrossRef D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans, “Design and construction of a realistic digital brain phantom,” IEEE Trans. Med. Imaging 17 (3), 463–468 (1998).CrossRef
49.
go back to reference T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable,” IEEE Trans. Med. Imaging 31 (2), 153–163 (2012).CrossRef T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable,” IEEE Trans. Med. Imaging 31 (2), 153–163 (2012).CrossRef
50.
go back to reference C. L. Li, D. B. Goldgof, and L. O. Hall, “Knowledge-based classification and tissue labeling of MR images of human brain,” IEEE Trans. Med. Imaging 12 (4), 740–750 (1993).CrossRef C. L. Li, D. B. Goldgof, and L. O. Hall, “Knowledge-based classification and tissue labeling of MR images of human brain,” IEEE Trans. Med. Imaging 12 (4), 740–750 (1993).CrossRef
51.
go back to reference P. Maji and S. K. Pal, “RFCM: A hybrid clustering algorithm using rough and fuzzy sets,” Fundam. Inf. 80 (4), 475–496 (2007).MathSciNetMATH P. Maji and S. K. Pal, “RFCM: A hybrid clustering algorithm using rough and fuzzy sets,” Fundam. Inf. 80 (4), 475–496 (2007).MathSciNetMATH
52.
go back to reference A. Halder, “Kernel based rough fuzzy c-means clustering optimized using particle swarm optimization,” in Proceedings of the International Symposium on Advanced Computing and Communication (ISACC) (2015), pp. 41–48. A. Halder, “Kernel based rough fuzzy c-means clustering optimized using particle swarm optimization,” in Proceedings of the International Symposium on Advanced Computing and Communication (ISACC) (2015), pp. 41–48.
53.
go back to reference S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34 (4), 193–199 (2004).CrossRef S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34 (4), 193–199 (2004).CrossRef
54.
go back to reference A. Halder and N. A. Talukdar, “Robust brain magnetic resonance image segmentation using modified rough-fuzzy c-means with spatial constraints,” Appl. Soft Comput. 85, 105758 (2019).CrossRef A. Halder and N. A. Talukdar, “Robust brain magnetic resonance image segmentation using modified rough-fuzzy c-means with spatial constraints,” Appl. Soft Comput. 85, 105758 (2019).CrossRef
55.
go back to reference S. Das and S. Sil, “Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm,” Inf. Sci. 180 (8), 1237–1256 (2010).MathSciNetCrossRef S. Das and S. Sil, “Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm,” Inf. Sci. 180 (8), 1237–1256 (2010).MathSciNetCrossRef
56.
go back to reference J. A. Rice, Mathematical Statistics and Data Analysis (Cengage Learning, 2006). J. A. Rice, Mathematical Statistics and Data Analysis (Cengage Learning, 2006).
Metadata
Title
Partially Supervised Kernel Induced Rough Fuzzy Clustering for Brain Tissue Segmentation
Authors
Nur Alom Talukdar
Anindya Halder
Publication date
01-01-2021
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 1/2021
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661821010156

Other articles of this Issue 1/2021

Pattern Recognition and Image Analysis 1/2021 Go to the issue

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

A Single Image Super-Resolution Algorithm Based on Dense Residual Convolutional Network

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

A Hybrid Single Image Super-Resolution Technique Using Fractal Interpolation and Convolutional Neural Network

Premium Partner