Skip to main content
Top

2018 | OriginalPaper | Chapter

6. Peptide-Based Hydrogels/Organogels: Assembly and Application

Authors : Juan Wang, Xuehai Yan

Published in: Nano/Micro-Structured Materials for Energy and Biomedical Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Peptide-based organogels/hydrogels are flexible and versatile in biological and nanotechnological applications. These supramolecular gels consisted of supramolecular fibrous networks formed through non-covalent interactions, including hydrogen bonding, hydrophobic, electrostatic, ππ stacking, and van der Waals interactions. In this chapter, we present the assembly, structures, and governing interactions of these supramolecular gels based on a broad range of peptides. We also highlight the potential applications of these supramolecular gels in tissue engineering, drug delivery, templates for nanofabrication, and detergent of waste water, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang J, Liu K, Xing R, Yan X (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604CrossRef Wang J, Liu K, Xing R, Yan X (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604CrossRef
2.
go back to reference Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRef Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421CrossRef
3.
go back to reference Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825CrossRef Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825CrossRef
4.
go back to reference Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178CrossRef Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178CrossRef
5.
go back to reference Evd Linden, Venema P (2007) Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci 12:158–165CrossRef Evd Linden, Venema P (2007) Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci 12:158–165CrossRef
6.
go back to reference Hauser CA, Zhang S (2010) Nanotechnology: peptides as biological semiconductors. Nature 468(7323):516–517CrossRef Hauser CA, Zhang S (2010) Nanotechnology: peptides as biological semiconductors. Nature 468(7323):516–517CrossRef
7.
go back to reference Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 39(9):3349–3350CrossRef Ulijn RV, Woolfson DN (2010) Peptide and protein based materials in 2010: from design and structure to function and application. Chem Soc Rev 39(9):3349–3350CrossRef
8.
go back to reference Löwik DW, Leunissen E, Van den Heuvel M, Hansen M, van Hest JC (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39(9):3394–3412CrossRef Löwik DW, Leunissen E, Van den Heuvel M, Hansen M, van Hest JC (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39(9):3394–3412CrossRef
9.
go back to reference Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54CrossRef Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: an overview. Peptides 39:47–54CrossRef
10.
go back to reference Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43(20):6881–6893CrossRef Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43(20):6881–6893CrossRef
11.
go back to reference Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28(6):989–992CrossRef Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28(6):989–992CrossRef
12.
go back to reference Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105(4):1401–1443CrossRef Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105(4):1401–1443CrossRef
13.
go back to reference Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890CrossRef Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890CrossRef
14.
go back to reference Hauser CAE, Zhang S (2010) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39:2780–2790CrossRef Hauser CAE, Zhang S (2010) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39:2780–2790CrossRef
15.
go back to reference Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40(8):4295–4306CrossRef Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40(8):4295–4306CrossRef
16.
go back to reference Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150–8177CrossRef Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150–8177CrossRef
17.
go back to reference De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300CrossRef De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300CrossRef
18.
go back to reference Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540CrossRef Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540CrossRef
19.
go back to reference Johnson EK, Adams DJ, Cameron PJ (2011) Peptide based low molecular weight gelators. J Mater Chem 21(7):2024–2027CrossRef Johnson EK, Adams DJ, Cameron PJ (2011) Peptide based low molecular weight gelators. J Mater Chem 21(7):2024–2027CrossRef
20.
go back to reference Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. Rsc Adv 3(24):9117–9149CrossRef Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. Rsc Adv 3(24):9117–9149CrossRef
21.
go back to reference Raeburn J, Cardoso AZ, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42(12):5143–5156CrossRef Raeburn J, Cardoso AZ, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42(12):5143–5156CrossRef
22.
go back to reference Tomasini C, Castellucci N (2013) Peptides and peptidomimetics that behave as low molecular weight gelators. Chem Soc Rev 42(1):156–172CrossRef Tomasini C, Castellucci N (2013) Peptides and peptidomimetics that behave as low molecular weight gelators. Chem Soc Rev 42(1):156–172CrossRef
23.
go back to reference Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 10(4):1671–1682CrossRef Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 10(4):1671–1682CrossRef
24.
go back to reference Jonker AM, Lowik DWPM, Hest JCMv (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773 Jonker AM, Lowik DWPM, Hest JCMv (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773
25.
go back to reference Rodriguez LMDL, Hemar Y, Cornish J, Brimble MA (2016) Structure-mechanical property correlations of hydrogel forming b-sheet peptides. Chem Soc Rev 45:4797–4828CrossRef Rodriguez LMDL, Hemar Y, Cornish J, Brimble MA (2016) Structure-mechanical property correlations of hydrogel forming b-sheet peptides. Chem Soc Rev 45:4797–4828CrossRef
26.
go back to reference Naskar J, Palui G, Banerjee A (2009) Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH. J Phys Chem B 113:11787–11792CrossRef Naskar J, Palui G, Banerjee A (2009) Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH. J Phys Chem B 113:11787–11792CrossRef
27.
go back to reference Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567CrossRef Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567CrossRef
28.
go back to reference Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald A, Kirkland M, Serpell LC, Butler MF, Woolfson ND (2009) Rational design and application of responsive a-helical peptide hydrogels. Nat Mater 8:596–600 Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald A, Kirkland M, Serpell LC, Butler MF, Woolfson ND (2009) Rational design and application of responsive a-helical peptide hydrogels. Nat Mater 8:596–600
29.
go back to reference Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 75(4):954–963CrossRef Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins 75(4):954–963CrossRef
30.
go back to reference Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) On crystal versus fiber formation in dipeptide hydrogelator systems. Langmuir 28(25):9797–9806CrossRef Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) On crystal versus fiber formation in dipeptide hydrogelator systems. Langmuir 28(25):9797–9806CrossRef
31.
go back to reference Sasselli IR, Halling PJ, Ulijn RV, Tuttle T (2016) Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10(2):2661–2668CrossRef Sasselli IR, Halling PJ, Ulijn RV, Tuttle T (2016) Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10(2):2661–2668CrossRef
32.
go back to reference Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16(10):3176–3183CrossRef Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J 16(10):3176–3183CrossRef
33.
go back to reference Wang J, Liu K, Yan L, Wang A, Bai S, Yan X (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10(2):2138–2143CrossRef Wang J, Liu K, Yan L, Wang A, Bai S, Yan X (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10(2):2138–2143CrossRef
34.
go back to reference Moyer TJ, Finbloom JA, Chen F, Toft DJ, Cryns VL, Stupp SI (2014) pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J Am Chem Soc 136(42):14746–14752CrossRef Moyer TJ, Finbloom JA, Chen F, Toft DJ, Cryns VL, Stupp SI (2014) pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J Am Chem Soc 136(42):14746–14752CrossRef
35.
go back to reference Liu XC, Zhu PL, Fei JB, Zhao J, Yan XH, Li JB (2015) Synthesis of peptide-based hybrid nanobelts with enhanced color emission by heat treatment or water induction. Chem Eur J 21(26):9461–9467CrossRef Liu XC, Zhu PL, Fei JB, Zhao J, Yan XH, Li JB (2015) Synthesis of peptide-based hybrid nanobelts with enhanced color emission by heat treatment or water induction. Chem Eur J 21(26):9461–9467CrossRef
36.
go back to reference Webber MJ, Newcomb CJ, Bitton R, Stupp SI (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7(20):9665–9672CrossRef Webber MJ, Newcomb CJ, Bitton R, Stupp SI (2011) Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7(20):9665–9672CrossRef
37.
go back to reference Guilbaud J-B, Rochas C, Miller AF, Saiani A (2013) Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels. Biomacromolecules 14(5):1403–1411CrossRef Guilbaud J-B, Rochas C, Miller AF, Saiani A (2013) Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels. Biomacromolecules 14(5):1403–1411CrossRef
38.
go back to reference Lan Y, Corradini M, Weiss R, Raghavan S, Rogers M (2015) To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev 44:6035–6058CrossRef Lan Y, Corradini M, Weiss R, Raghavan S, Rogers M (2015) To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev 44:6035–6058CrossRef
39.
go back to reference Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640CrossRef Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640CrossRef
40.
go back to reference Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627CrossRef Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627CrossRef
41.
go back to reference Pappas CG, Frederix PWJM, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S (2015) Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem Commun 51(40):8465–8468CrossRef Pappas CG, Frederix PWJM, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S (2015) Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem Commun 51(40):8465–8468CrossRef
42.
go back to reference Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18(5):611–614CrossRef Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18(5):611–614CrossRef
43.
go back to reference Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on p-p interlocked b-sheets. Adv Mater 20:37–41CrossRef Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on p-p interlocked b-sheets. Adv Mater 20:37–41CrossRef
44.
go back to reference Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pK(a) shifts. Langmuir 25(16):9447–9453CrossRef Tang C, Smith AM, Collins RF, Ulijn RV, Saiani A (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pK(a) shifts. Langmuir 25(16):9447–9453CrossRef
45.
go back to reference Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370CrossRef Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370CrossRef
46.
go back to reference Yang Z, Liang G, Xu B (2006) Supramolecular hydrogels based on b-amino acid derivatives. Chem Commun 738–740 Yang Z, Liang G, Xu B (2006) Supramolecular hydrogels based on b-amino acid derivatives. Chem Commun 738–740
47.
go back to reference Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128(4):1070–1071CrossRef Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128(4):1070–1071CrossRef
48.
go back to reference Das AK, Collins R, Ulijn RV (2008) Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 2:279–287CrossRef Das AK, Collins R, Ulijn RV (2008) Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 2:279–287CrossRef
49.
go back to reference Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651CrossRef Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromol 10:2646–2651CrossRef
50.
go back to reference Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132(8):2719–2728CrossRef Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132(8):2719–2728CrossRef
51.
go back to reference Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin IH, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8(20):5595–5602CrossRef Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin IH, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter 8(20):5595–5602CrossRef
52.
go back to reference Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives of form nanofibers and hydrogels. Biopolymers 94:19–31CrossRef Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives of form nanofibers and hydrogels. Biopolymers 94:19–31CrossRef
53.
go back to reference Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7:1326–1333CrossRef Cheng G, Castelletto V, Jones RR, Connon CJ, Hamley IW (2011) Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7:1326–1333CrossRef
54.
go back to reference Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18CrossRef Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18CrossRef
55.
go back to reference Claussen RC, Rabatic BM, Stupp SI (2003) Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J Am Chem Soc 125:12680–12681CrossRef Claussen RC, Rabatic BM, Stupp SI (2003) Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J Am Chem Soc 125:12680–12681CrossRef
56.
go back to reference Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508CrossRef Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16(4):499–508CrossRef
57.
go back to reference Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037CrossRef Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037CrossRef
58.
go back to reference Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125:11802–11803CrossRef Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125:11802–11803CrossRef
59.
go back to reference Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029CrossRef Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029CrossRef
60.
go back to reference Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in b-hairpin peptide self-assembly. Macromolecules 41:5763–5772CrossRef Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in b-hairpin peptide self-assembly. Macromolecules 41:5763–5772CrossRef
61.
go back to reference Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42:7137–7145CrossRef Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42:7137–7145CrossRef
62.
go back to reference Nagy KJ, Giano MC, Jin A, Pochan DJ, Schneider JP (2011) Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J Am Chem Soc 133:14975–14977CrossRef Nagy KJ, Giano MC, Jin A, Pochan DJ, Schneider JP (2011) Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J Am Chem Soc 133:14975–14977CrossRef
63.
go back to reference Rubio J, Alfonso I, Burguete MI, Luis SV (2012) Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chem Commun 48:2210–2212CrossRef Rubio J, Alfonso I, Burguete MI, Luis SV (2012) Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chem Commun 48:2210–2212CrossRef
64.
go back to reference Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chem EurJ 18:4063–4072CrossRef Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chem EurJ 18:4063–4072CrossRef
65.
go back to reference Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428CrossRef Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428CrossRef
66.
go back to reference Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953CrossRef Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953CrossRef
67.
go back to reference Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35CrossRef Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35CrossRef
68.
go back to reference Li Z, Deming TJ (2010) Tunable hydrogel morphology via self-assembly of amphiphilic pentablock copolypeptides. Soft Matter 6:2546–2551CrossRef Li Z, Deming TJ (2010) Tunable hydrogel morphology via self-assembly of amphiphilic pentablock copolypeptides. Soft Matter 6:2546–2551CrossRef
69.
go back to reference Glassman MJ, Olsen BD (2015) Arrested phase separation of elastin-like polypeptide solutions yields stiff, thermoresponsive gels. Biomacromol 16:3762–3773CrossRef Glassman MJ, Olsen BD (2015) Arrested phase separation of elastin-like polypeptide solutions yields stiff, thermoresponsive gels. Biomacromol 16:3762–3773CrossRef
70.
go back to reference Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414CrossRef Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414CrossRef
71.
go back to reference Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27:3717–3736CrossRef Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27:3717–3736CrossRef
72.
go back to reference Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM (2016) Biomaterials for 4D stem cell culture. Curr Opin Solid State Mater Sci 20:212–224CrossRef Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM (2016) Biomaterials for 4D stem cell culture. Curr Opin Solid State Mater Sci 20:212–224CrossRef
73.
go back to reference Chen G, Chen J, Liu Q, Ou C, Gao J (2015) Enzymatic formation of a meta-stable supramolecular hydrogel for 3D cell culture. Rsc Adv 5:30675–30678CrossRef Chen G, Chen J, Liu Q, Ou C, Gao J (2015) Enzymatic formation of a meta-stable supramolecular hydrogel for 3D cell culture. Rsc Adv 5:30675–30678CrossRef
74.
go back to reference Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33CrossRef Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33CrossRef
75.
go back to reference Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef
76.
go back to reference Mata A, Hsu L, Capito R, Aparicio C, Henriksonc K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matter 5:1228–1236CrossRef Mata A, Hsu L, Capito R, Aparicio C, Henriksonc K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matter 5:1228–1236CrossRef
77.
go back to reference Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001CrossRef Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001CrossRef
78.
go back to reference Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001CrossRef Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001CrossRef
79.
go back to reference Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based b-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRef Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based b-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRef
80.
go back to reference Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530CrossRef Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530CrossRef
81.
go back to reference Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943CrossRef Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater 5:934–943CrossRef
82.
go back to reference Tian YF, Devgun JM, Collier JH (2011) Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7:6005–6011CrossRef Tian YF, Devgun JM, Collier JH (2011) Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7:6005–6011CrossRef
83.
go back to reference Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y (2015) Noncovalent hydrogel beads as microcarriers for cell culture. Angew Chem Int Ed 54(13):3962–3966CrossRef Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y (2015) Noncovalent hydrogel beads as microcarriers for cell culture. Angew Chem Int Ed 54(13):3962–3966CrossRef
84.
go back to reference Zamuner A, Cavo M, Scaglione S, Messina GML, Russo T, Gloria A, Marletta G, Dettin M (2016) Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells. Materials 9:727CrossRef Zamuner A, Cavo M, Scaglione S, Messina GML, Russo T, Gloria A, Marletta G, Dettin M (2016) Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells. Materials 9:727CrossRef
85.
go back to reference Loo Y, Hauser CAE (2016) Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater 11:014103CrossRef Loo Y, Hauser CAE (2016) Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater 11:014103CrossRef
86.
go back to reference Zhang SM, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9(7):594–601CrossRef Zhang SM, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9(7):594–601CrossRef
87.
go back to reference Bysell H, Månsson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Del Rev 63:1172–1185CrossRef Bysell H, Månsson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Del Rev 63:1172–1185CrossRef
89.
go back to reference Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22):5304–5310CrossRef Williams RJ, Hall TE, Glattauer V, White J, Pasic PJ, Sorensen AB, Waddington L, McLean KM, Currie PD, Hartley PG (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 32(22):5304–5310CrossRef
90.
go back to reference Gao J, Zheng WT, Kong DL, Yang ZM (2011) Dual enzymes regulate the molecular self-assembly of tetra-peptide derivatives. Soft Matter 7(21):10443–10448CrossRef Gao J, Zheng WT, Kong DL, Yang ZM (2011) Dual enzymes regulate the molecular self-assembly of tetra-peptide derivatives. Soft Matter 7(21):10443–10448CrossRef
91.
go back to reference Ruana L, Zhanga H, Luoa H, Liua J, Tanga F, Shi Y-K, Zhaoa X (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A 106(13):5105–5110CrossRef Ruana L, Zhanga H, Luoa H, Liua J, Tanga F, Shi Y-K, Zhaoa X (2009) Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A 106(13):5105–5110CrossRef
92.
go back to reference Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B (2013) Dephosphory-lation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914CrossRef Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B (2013) Dephosphory-lation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914CrossRef
93.
go back to reference Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107CrossRef Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107CrossRef
94.
go back to reference Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E (2013) Peptide-based hydrogel nanoparticles as effective drug delivery agents. Biorg Med Chem 21:3517–3522CrossRef Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E (2013) Peptide-based hydrogel nanoparticles as effective drug delivery agents. Biorg Med Chem 21:3517–3522CrossRef
95.
go back to reference Xing RR, Liu K, Jiao TF, Zhang N, Ma K, Zhang RY, Zou QL, Ma GH, Yan XH (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28:3669–3676CrossRef Xing RR, Liu K, Jiao TF, Zhang N, Ma K, Zhang RY, Zou QL, Ma GH, Yan XH (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28:3669–3676CrossRef
96.
go back to reference Thornton PD, Mart RJ, Webbb SJ, Ulijn RV (2008) Enzyme-responsive hydrogel particles for the controlled release of proteins: designing peptide actuators to match payload. Soft Matter 4:821–827CrossRef Thornton PD, Mart RJ, Webbb SJ, Ulijn RV (2008) Enzyme-responsive hydrogel particles for the controlled release of proteins: designing peptide actuators to match payload. Soft Matter 4:821–827CrossRef
97.
go back to reference Maity I, Rasale DB, Das AK (2012) Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8:5301–5308CrossRef Maity I, Rasale DB, Das AK (2012) Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8:5301–5308CrossRef
98.
go back to reference Dutta S, Shome A, Kar T, Das PK (2011) Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir 27:5000–50008CrossRef Dutta S, Shome A, Kar T, Das PK (2011) Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir 27:5000–50008CrossRef
99.
go back to reference Sharma KP, Harniman R, Farrugia T, Briscoe WH, Perriman AW, Mann S (2016) Dynamic behavior in enzyme-polymer surfactant hydrogel films. Adv Mater 28:1597–1602CrossRef Sharma KP, Harniman R, Farrugia T, Briscoe WH, Perriman AW, Mann S (2016) Dynamic behavior in enzyme-polymer surfactant hydrogel films. Adv Mater 28:1597–1602CrossRef
100.
go back to reference Yan X, Cui Y, He Q, Wang K, Li J (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20(4):1522–1526CrossRef Yan X, Cui Y, He Q, Wang K, Li J (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20(4):1522–1526CrossRef
101.
go back to reference Adhikari B, Nanda J, Banerjee A (2011) Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Chem Eur J 17:11488–11496CrossRef Adhikari B, Nanda J, Banerjee A (2011) Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Chem Eur J 17:11488–11496CrossRef
102.
go back to reference Afrasiabi R, Kraatz H-B (2013) Small-peptide-based organogel kit: towards the development of multicomponent self-sorting organogels. Chem Eur J 19:15862–15871CrossRef Afrasiabi R, Kraatz H-B (2013) Small-peptide-based organogel kit: towards the development of multicomponent self-sorting organogels. Chem Eur J 19:15862–15871CrossRef
103.
go back to reference Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1706–1709CrossRef Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1706–1709CrossRef
104.
go back to reference Ray S, Das AK, Banerjee A (2006) Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Chem Commun 26:2816–2818CrossRef Ray S, Das AK, Banerjee A (2006) Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Chem Commun 26:2816–2818CrossRef
105.
go back to reference Liu Y, Wang Y, Jin L, Chen T, Yin B (2016) MPTTF-containing tripeptide-based organogels: receptor for 2, 4, 6-trinitrophenol and multiple stimuli-responsive properties. Soft Matter 12:934–945CrossRef Liu Y, Wang Y, Jin L, Chen T, Yin B (2016) MPTTF-containing tripeptide-based organogels: receptor for 2, 4, 6-trinitrophenol and multiple stimuli-responsive properties. Soft Matter 12:934–945CrossRef
Metadata
Title
Peptide-Based Hydrogels/Organogels: Assembly and Application
Authors
Juan Wang
Xuehai Yan
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7787-6_6