Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Personalised Aesthetics with Residual Adapters

Authors: Carlos Rodríguez-Pardo, Hakan Bilen

Published in: Pattern Recognition and Image Analysis

Publisher: Springer International Publishing

share
SHARE

Abstract

The use of computational methods to evaluate aesthetics in photography has gained interest in recent years due to the popularization of convolutional neural networks and the availability of new annotated datasets. Most studies in this area have focused on designing models that do not take into account individual preferences for the prediction of the aesthetic value of pictures. We propose a model based on residual learning that is capable of learning subjective, user-specific preferences over aesthetics in photography, while surpassing the state-of-the-art methods and keeping a limited number of user-specific parameters in the model. Our model can also be used for picture enhancement, and it is suitable for content-based or hybrid recommender systems in which the amount of computational resources is limited.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
6.
go back to reference Chen, Y.L., Huang, T.W., Chang, K.H., Tsai, Y.C., Chen, H.T., Chen, B.Y.: Quantitative analysis of automatic image cropping algorithms: a dataset and comparative study. In: Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV, pp. 226–234 (2017). https://​arxiv.​org/​pdf/​1701.​01480.​pdf Chen, Y.L., Huang, T.W., Chang, K.H., Tsai, Y.C., Chen, H.T., Chen, B.Y.: Quantitative analysis of automatic image cropping algorithms: a dataset and comparative study. In: Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV, pp. 226–234 (2017). https://​arxiv.​org/​pdf/​1701.​01480.​pdf
11.
go back to reference Hayn-Leichsenring, G.U., Lehmann, T., Redies, C.: Subjective ratings of beauty and aesthetics: correlations with statistical image properties in Western oil paintings (2017) Hayn-Leichsenring, G.U., Lehmann, T., Redies, C.: Subjective ratings of beauty and aesthetics: correlations with statistical image properties in Western oil paintings (2017)
27.
go back to reference Ren, J., Shen, X., Lin, Z., Mech, R., Foran, D.J.: Personalized image aesthetics. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 638–647 (2017) Ren, J., Shen, X., Lin, Z., Mech, R., Foran, D.J.: Personalized image aesthetics. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 638–647 (2017)
33.
go back to reference Wang, W., Shen, J.: Deep cropping via attention box prediction and aesthetics assessment. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 2205–2213 (2017) Wang, W., Shen, J.: Deep cropping via attention box prediction and aesthetics assessment. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 2205–2213 (2017)
35.
go back to reference Yu, W., Chen, X.: Aesthetic-based clothing recommendation 2 (2018) Yu, W., Chen, X.: Aesthetic-based clothing recommendation 2 (2018)
Metadata
Title
Personalised Aesthetics with Residual Adapters
Authors
Carlos Rodríguez-Pardo
Hakan Bilen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-31332-6_44

Premium Partner