Skip to main content
Top
Published in: Journal of Materials Science 13/2016

07-04-2016 | Original Paper

Phase relations of Li2O–FeO–SiO2 ternary system and electrochemical properties of Li x Si y O z compounds

Authors: Danlin Yan, Xiaofeng Geng, Yanming Zhao, Xinghao Lin, Xudong Liu

Published in: Journal of Materials Science | Issue 13/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phase equilibria in the ternary Li2O–FeO–SiO2 system have been studied by means of X-ray powder diffraction. The experimental results show that no new lithium ferrous silicate compounds can be found in our experimental condition which may be a candidate cathode material for LIBs. The Li2O–FeO–SiO2 system can be characterized by the existence of 9 three-phase regions. In Li2O–SiO2 binary system, Li2SiO3 and Li4SiO4 are purely synthesized by solid-state reactions; other new information includes the electrochemical properties of Li2SiO3 and Li4SiO4 compounds, where the electrochemical test indicated that initial discharge-specific capacities can reach to 136 and 129 mAhg−1, respectively. Enhanced performance was exhibited after carbon coating. The initial discharge-specific capacities of carbon-coated Li2SiO3 and carbon-coated Li4SiO4 compound can reach to 230 and 220 mAhg−1 respectively. Our results show that Li2SiO3 and Li4SiO4 samples have better capacity retention except for the first discharge. No significant change can be seen in ex situ XRD patterns for Li2SiO3/C, while the lithium-ion insertion/extraction reaction may exist in Li4SiO4/C as forming solid solutions (nominated Li4+x SiO4).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
2.
go back to reference Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. J Electrochem Solid State Lett 7:A93–A97CrossRef Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. J Electrochem Solid State Lett 7:A93–A97CrossRef
3.
go back to reference Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid State Lett 6:A194–A197CrossRef Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid State Lett 6:A194–A197CrossRef
4.
go back to reference Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68:87–90CrossRef Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68:87–90CrossRef
5.
go back to reference Chan CK, Peng HL, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef Chan CK, Peng HL, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef
6.
go back to reference Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) A high capacity nano Si composite anode material for lithium rechargeable batteries. J Electrochem Solid State Lett 2:547–549CrossRef Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) A high capacity nano Si composite anode material for lithium rechargeable batteries. J Electrochem Solid State Lett 2:547–549CrossRef
7.
go back to reference Sandu I, Moreau P, Guyomard D, Brousse T, Roue L (2007) Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. J Solid State Ion 178:1297–1303CrossRef Sandu I, Moreau P, Guyomard D, Brousse T, Roue L (2007) Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. J Solid State Ion 178:1297–1303CrossRef
8.
go back to reference Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRef Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRef
9.
go back to reference Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. J Solid State Ion 152:125–129CrossRef Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. J Solid State Ion 152:125–129CrossRef
10.
go back to reference Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL (2014) Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries. Electrochim Acta 115:16–21CrossRef Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL (2014) Evaluation and performance improvement of Si/SiOx/C based composite as anode material for lithium ion batteries. Electrochim Acta 115:16–21CrossRef
11.
go back to reference Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef
12.
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
13.
go back to reference Gong ZL, Li YX, Yang Y (2006) Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 9:A542–A544CrossRef Gong ZL, Li YX, Yang Y (2006) Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 9:A542–A544CrossRef
14.
go back to reference Nytén A, Abouimrane A, Armand M, Gustaffson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. J Electrochem Commun 7:156–160CrossRef Nytén A, Abouimrane A, Armand M, Gustaffson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. J Electrochem Commun 7:156–160CrossRef
15.
go back to reference Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. J Electrochemical and Solid State Letters 11:A60–A63CrossRef Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. J Electrochemical and Solid State Letters 11:A60–A63CrossRef
16.
go back to reference Hirai K, Tatsumisago M, Minami T (1995) Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy = Li4SiO4, Li2SiO4). Solid State Ion 78:269–273CrossRef Hirai K, Tatsumisago M, Minami T (1995) Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy = Li4SiO4, Li2SiO4). Solid State Ion 78:269–273CrossRef
17.
go back to reference Cruza D, Bulbulian S, Lima E, Pfeiffer H (2006) Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). J Solid State Chem 179:909–916CrossRef Cruza D, Bulbulian S, Lima E, Pfeiffer H (2006) Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). J Solid State Chem 179:909–916CrossRef
18.
go back to reference Nagai R, Kita F, Yamada M, Katayama H (2011) Development of highly reliable high-capacity batteries for mobile devices and small- to medium-sized batteries for industrial applications. Hitachi Rev 60:28–32 Nagai R, Kita F, Yamada M, Katayama H (2011) Development of highly reliable high-capacity batteries for mobile devices and small- to medium-sized batteries for industrial applications. Hitachi Rev 60:28–32
19.
go back to reference Chappel E, Holzapfel M, Chouteau G, Ott A (2000) Effect of cobalt on the magnetic properties of the LiFe1−xCoxO2 layered system (0 ≤ x ≤ 1). J Solid State Chem 154:451–459CrossRef Chappel E, Holzapfel M, Chouteau G, Ott A (2000) Effect of cobalt on the magnetic properties of the LiFe1−xCoxO2 layered system (0 ≤ x ≤ 1). J Solid State Chem 154:451–459CrossRef
20.
go back to reference Neha P, Behrouz K, Matthias A, Amit VS, Loukya B, Ranjan D, Milko I, Leonard B, Irina G, Tim M, Arunava G (2015) Study of structural and ferromagnetic resonance properties of spinel lithium ferrite (LiFe5O8) single crystals. J Appl Phys 117:233907/1–233907/5 Neha P, Behrouz K, Matthias A, Amit VS, Loukya B, Ranjan D, Milko I, Leonard B, Irina G, Tim M, Arunava G (2015) Study of structural and ferromagnetic resonance properties of spinel lithium ferrite (LiFe5O8) single crystals. J Appl Phys 117:233907/1–233907/5
21.
go back to reference Luge R, Hoppe R (1984) Neues über Oxoferrate (III). I. Zur Kenntnis von Li5FeO4[1] Mit einer Notiz über Mischkristalle Na5Fe1- xGaxO4. Z Anorg Allg Chem 513:141–150CrossRef Luge R, Hoppe R (1984) Neues über Oxoferrate (III). I. Zur Kenntnis von Li5FeO4[1] Mit einer Notiz über Mischkristalle Na5Fe1- xGaxO4. Z Anorg Allg Chem 513:141–150CrossRef
22.
go back to reference Barblan FF (1943) Untersuchungen zur Kristallchemie von Fe2O3 und TiO2, sowie ihrer Alkaliverbindungen. Schweiz Miner Petrogr Mitt 23:295–352 Barblan FF (1943) Untersuchungen zur Kristallchemie von Fe2O3 und TiO2, sowie ihrer Alkaliverbindungen. Schweiz Miner Petrogr Mitt 23:295–352
23.
go back to reference de Picciotto LA, Thackeray MM (1986) Lithium insertion into the spinel LiFe5O8. Mater Res Bull 21:583–592CrossRef de Picciotto LA, Thackeray MM (1986) Lithium insertion into the spinel LiFe5O8. Mater Res Bull 21:583–592CrossRef
24.
go back to reference Berbenni V, Marini A, Bruni G, Riccardi R (2000) Solid state reaction study in the systems Li2CO3-FeC2O4-2H2O and Li2CO3-Fe2(C2O4) 3·6H2O. Thermochim Acta 346:115–132CrossRef Berbenni V, Marini A, Bruni G, Riccardi R (2000) Solid state reaction study in the systems Li2CO3-FeC2O4-2H2O and Li2CO3-Fe2(C2O4) 3·6H2O. Thermochim Acta 346:115–132CrossRef
25.
go back to reference Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O–FeO–B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J Alloy Compd 461:585–590CrossRef Dong YZ, Zhao YM, Fu P, Zhou H, Hou XM (2008) Phase relations of Li2O–FeO–B2O3 ternary system and electrochemical properties of LiFeBO3 compound. J Alloy Compd 461:585–590CrossRef
26.
go back to reference Lin XH, Zhao YM, Dong YZ, Liang ZY, Yan DL, Liu XD, Kuang Q (2015) Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+xFe1−xPO4 compounds under Ar/H2 atmosphere. J Mater Sci 50:203–209CrossRef Lin XH, Zhao YM, Dong YZ, Liang ZY, Yan DL, Liu XD, Kuang Q (2015) Subsolidus phase relations of Li2O–FeO–P2O5 system and the solid solubility of Li1+xFe1−xPO4 compounds under Ar/H2 atmosphere. J Mater Sci 50:203–209CrossRef
27.
go back to reference Krueger H, Kahlenberg V, Kaindl R (2007) Li2Si3O7: crystal structure and Raman spectroscopy. J Solid State Chem 180:922–928CrossRef Krueger H, Kahlenberg V, Kaindl R (2007) Li2Si3O7: crystal structure and Raman spectroscopy. J Solid State Chem 180:922–928CrossRef
28.
go back to reference Jong BD, Super H, Spek A, Veldman N, Nachtegaal G, Fischer J (1998) Mixed alkali systems: structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Crystallogr B 54:568–577CrossRef Jong BD, Super H, Spek A, Veldman N, Nachtegaal G, Fischer J (1998) Mixed alkali systems: structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Crystallogr B 54:568–577CrossRef
29.
go back to reference Hesse KF (1977) Refinement of the crystal structure of lithium polysilicate. Acta Crystallogr B 33:901–902CrossRef Hesse KF (1977) Refinement of the crystal structure of lithium polysilicate. Acta Crystallogr B 33:901–902CrossRef
30.
go back to reference Voellenkle H, Wittmann A, Nowotny H (1969) Die Kristallstruktur der Verbindung Li6[Si2O7]. Monatsh Chem 100:295–303CrossRef Voellenkle H, Wittmann A, Nowotny H (1969) Die Kristallstruktur der Verbindung Li6[Si2O7]. Monatsh Chem 100:295–303CrossRef
31.
go back to reference Hoppe R, Bernet K, Moeller A (2003) Einkristall-Synthese hochschmelzender Oxyde bei niederer Temperatur:γ-Li4[SiO4] ohne Fehlordnung, isotyp mit Na4[SnO4]. (Was heißt’Isotypie‘?). Z fuer Anorg und Allg Chem 629:1285–1293CrossRef Hoppe R, Bernet K, Moeller A (2003) Einkristall-Synthese hochschmelzender Oxyde bei niederer Temperatur:γ-Li4[SiO4] ohne Fehlordnung, isotyp mit Na4[SnO4]. (Was heißt’Isotypie‘?). Z fuer Anorg und Allg Chem 629:1285–1293CrossRef
32.
go back to reference Hofmann R, Hoppe R (1987) Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4). Z fuer Anorg und Allg Chem 555:118–128CrossRef Hofmann R, Hoppe R (1987) Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4). Z fuer Anorg und Allg Chem 555:118–128CrossRef
33.
go back to reference Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041 Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041
34.
go back to reference Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: high temperature crystal chemistry. Am Miner 61:38–53 Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: high temperature crystal chemistry. Am Miner 61:38–53
35.
go back to reference Giusta AD, Ottonello G, Secco L (1990) Precision estimates of interatomic distances using site occupancies, ionization potentials and polarizability in Pbnm silicate olivines. Acta Crystallogr B 46:160–165CrossRef Giusta AD, Ottonello G, Secco L (1990) Precision estimates of interatomic distances using site occupancies, ionization potentials and polarizability in Pbnm silicate olivines. Acta Crystallogr B 46:160–165CrossRef
36.
go back to reference Yamanaka T, Tobe H, Shimazu T, Nakatsuka A, Dobuchi Y, Ohtaka O, Nagai T (1998) Phase relations and physical properties of Fe2SiO4-Fe3O4 solid solution under pressures up to 12 Gpa. Geophys Monogr 101:451–459 Yamanaka T, Tobe H, Shimazu T, Nakatsuka A, Dobuchi Y, Ohtaka O, Nagai T (1998) Phase relations and physical properties of Fe2SiO4-Fe3O4 solid solution under pressures up to 12 Gpa. Geophys Monogr 101:451–459
37.
go back to reference Errandonea D, Santamaria-Perez D, Vegas A, Nuss J, Jansen M, Rodriguez-Hernandez P, Munoz A (2008) Structural stability of Fe5Si3 and Ni2Si studied by high-pressure X-ray diffraction and ab initio total-energy calculations. Phys Rev Ser 3 B 77:094113-1–094113-12 Errandonea D, Santamaria-Perez D, Vegas A, Nuss J, Jansen M, Rodriguez-Hernandez P, Munoz A (2008) Structural stability of Fe5Si3 and Ni2Si studied by high-pressure X-ray diffraction and ab initio total-energy calculations. Phys Rev Ser 3 B 77:094113-1–094113-12
38.
go back to reference Modaressi A, Malaman B, Gleitzer C, Tilley RJD (1985) Préparation et étude d’un oxysilicate de fer de valence mixte Fe7(SiO4)O6 (iscorite). J Solid State Chem 60:107–114CrossRef Modaressi A, Malaman B, Gleitzer C, Tilley RJD (1985) Préparation et étude d’un oxysilicate de fer de valence mixte Fe7(SiO4)O6 (iscorite). J Solid State Chem 60:107–114CrossRef
39.
go back to reference van Aken PA, Miehe G, Woodland AB, Angel RJ (2005) Crystal structure and cation distribution in Fe7SiO10 (“Iscorite”). Eur J Miner 17:723–731CrossRef van Aken PA, Miehe G, Woodland AB, Angel RJ (2005) Crystal structure and cation distribution in Fe7SiO10 (“Iscorite”). Eur J Miner 17:723–731CrossRef
40.
go back to reference Doh CH, Park CW, Shin HM, Kim DH, Chung YD, Moon SI, Jin BS, Kim HS, Veluchamy A (2008) A new SiO/C anode composition for lithium-ion battery. J Power Sources 179:367–370CrossRef Doh CH, Park CW, Shin HM, Kim DH, Chung YD, Moon SI, Jin BS, Kim HS, Veluchamy A (2008) A new SiO/C anode composition for lithium-ion battery. J Power Sources 179:367–370CrossRef
41.
go back to reference Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878CrossRef Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878CrossRef
42.
go back to reference Wang J, Zhao H, He J, Wang C, Wang J (2011) Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources 196:4811–4815CrossRef Wang J, Zhao H, He J, Wang C, Wang J (2011) Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources 196:4811–4815CrossRef
43.
go back to reference Veluchamy A, Doh CH, Kim DH, Lee JH, Lee DJ, Ha KH, Shin HM, Jin BS, Kim HS, Moon SI, Park CW (2009) Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J Power Sources 188:574–577CrossRef Veluchamy A, Doh CH, Kim DH, Lee JH, Lee DJ, Ha KH, Shin HM, Jin BS, Kim HS, Moon SI, Park CW (2009) Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J Power Sources 188:574–577CrossRef
44.
go back to reference Nara H, Yokoshima T, Otaki M, Momma T, Osaka T (2013) Structural analysis of highly-durable Si-O-C composite anode prepared by electrodeposition for lithium secondary batteries. Electrochim Acta 110:403–410CrossRef Nara H, Yokoshima T, Otaki M, Momma T, Osaka T (2013) Structural analysis of highly-durable Si-O-C composite anode prepared by electrodeposition for lithium secondary batteries. Electrochim Acta 110:403–410CrossRef
45.
go back to reference Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430CrossRef Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430CrossRef
46.
go back to reference Liu X, Zheng MC, Xie K (2011) Mechanism of lithium storage in Si–O–C composite anodes. J Power Sources 196:10667–10672CrossRef Liu X, Zheng MC, Xie K (2011) Mechanism of lithium storage in Si–O–C composite anodes. J Power Sources 196:10667–10672CrossRef
47.
go back to reference Boultif A, Louër D (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J Appl Cryst 24:987–993CrossRef Boultif A, Louër D (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J Appl Cryst 24:987–993CrossRef
48.
go back to reference Tranqui D, Shannon RD, Chen HY, Iijima S, Baur WH (1979) Crystal structure of ordered Li4SiO4. Acta Crystallogr B 35:2479–2487CrossRef Tranqui D, Shannon RD, Chen HY, Iijima S, Baur WH (1979) Crystal structure of ordered Li4SiO4. Acta Crystallogr B 35:2479–2487CrossRef
Metadata
Title
Phase relations of Li2O–FeO–SiO2 ternary system and electrochemical properties of Li x Si y O z compounds
Authors
Danlin Yan
Xiaofeng Geng
Yanming Zhao
Xinghao Lin
Xudong Liu
Publication date
07-04-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9943-2

Other articles of this Issue 13/2016

Journal of Materials Science 13/2016 Go to the issue

Premium Partners