Skip to main content
Top
Published in: Experiments in Fluids 4/2011

01-10-2011 | Research Article

Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame

Authors: M. Stöhr, R. Sadanandan, W. Meier

Published in: Experiments in Fluids | Issue 4/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The relation between flow field and flame structure of a turbulent swirl flame is investigated using simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence of OH (OH-PLIF). The measurements are performed in one axial and three transverse sections through the combustion chamber of a gas turbine model combustor, which is operated with methane and air under atmospheric pressure. Analysis of the velocity fields using proper orthogonal decomposition (POD) shows that the dominant unsteady flow structure is a so-called precessing vortex core (PVC). In each of the four sections, the PVC is represented by a characteristic pair of POD eigenmodes, and the phase angle of the precession can be determined for each instantaneous velocity field from its projection on this pair. Phase-conditioned averages of velocity field and OH distribution are thereby obtained and reveal a pronounced effect of the PVC in the form of convection-enhanced mixing. The increased mixing causes a rapid ignition of the fresh gas, and the swirling motion of the PVC leads to an enlarged flame surface due to flame roll-up. A three-dimensional representation shows that the PVC is accompanied by a co-precessing vortex in the outer shear layer, which, however, has no direct impact on the flame. As an alternative to phase averaging, a low-order representation of the phase-resolved dynamics is calculated based on the first pair of POD modes. It is found that small-scale structures are represented more accurately in the phase averages, whereas the low-order model has a considerable smoothing effect and therefore provides less detailed information. The findings demonstrate that the combined application of POD, PIV, and PLIF can provide detailed insights into flow–flame interaction in turbulent flames.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290CrossRef Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290CrossRef
go back to reference Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575MathSciNetCrossRef Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575MathSciNetCrossRef
go back to reference Böhm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high-speed PIV/OH PLIF. Proc Combust Inst 32:1647–1654CrossRef Böhm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high-speed PIV/OH PLIF. Proc Combust Inst 32:1647–1654CrossRef
go back to reference Boxx I, Stöhr M, Carter C, Meier W (2010) Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust Flame 157:1510–1525CrossRef Boxx I, Stöhr M, Carter C, Meier W (2010) Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust Flame 157:1510–1525CrossRef
go back to reference Borée J (2003) Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp Fluids 35:188–192CrossRef Borée J (2003) Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp Fluids 35:188–192CrossRef
go back to reference Chaudhuri S, Kostka S, Renfro MW, Cetegen BM (2010) Blowoff dynamics of bluff body stabilized turbulent premixed flames. Combust Flame 157:790–802CrossRef Chaudhuri S, Kostka S, Renfro MW, Cetegen BM (2010) Blowoff dynamics of bluff body stabilized turbulent premixed flames. Combust Flame 157:790–802CrossRef
go back to reference Chaudhuri S, Kostka S, Tuttle SG, Renfro MW, Cetegen BM (2011) Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor. Combust Flame (in press) Chaudhuri S, Kostka S, Tuttle SG, Renfro MW, Cetegen BM (2011) Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor. Combust Flame (in press)
go back to reference Duwig C, Iudiciani P (2010) Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbulence Combust 84:25–47MATHCrossRef Duwig C, Iudiciani P (2010) Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbulence Combust 84:25–47MATHCrossRef
go back to reference Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139:188–207CrossRef Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139:188–207CrossRef
go back to reference Hult J, Meier U, Meier W, Harvey A, Kaminski CF (2005) Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2D laser techniques and multi-scalar measurements. Proc Combust Inst 30:701–709CrossRef Hult J, Meier U, Meier W, Harvey A, Kaminski CF (2005) Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2D laser techniques and multi-scalar measurements. Proc Combust Inst 30:701–709CrossRef
go back to reference Konle M, Sattelmayer T (2009) Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp Fluids 47:627–635CrossRef Konle M, Sattelmayer T (2009) Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp Fluids 47:627–635CrossRef
go back to reference Konle M, Kiesewetter F, Sattelmayer T (2008) Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback. Exp Fluids 44:529–538CrossRef Konle M, Kiesewetter F, Sattelmayer T (2008) Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback. Exp Fluids 44:529–538CrossRef
go back to reference Kothnur PS, Tsurikov MS, Clemens NT, Donbar JM, Carter CD (2002) Planar imaging of CH, OH, and velocity in turbulent non-premixed jet flames. Proc Combust Inst 29:1921–1927CrossRef Kothnur PS, Tsurikov MS, Clemens NT, Donbar JM, Carter CD (2002) Planar imaging of CH, OH, and velocity in turbulent non-premixed jet flames. Proc Combust Inst 29:1921–1927CrossRef
go back to reference Lemaire A, Meyer TR, Zähringer K, Gord JR, Rolon JC (2004) PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength. Exp Fluids 36:36–42CrossRef Lemaire A, Meyer TR, Zähringer K, Gord JR, Rolon JC (2004) PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength. Exp Fluids 36:36–42CrossRef
go back to reference Lumley JL (1967) The structure of inhomogeneous turbulence. In: Yaglom AM, Tatarski VI (eds) Atmospheric turbulence and wave propagation. Nauka, Moscow, pp 166–178 Lumley JL (1967) The structure of inhomogeneous turbulence. In: Yaglom AM, Tatarski VI (eds) Atmospheric turbulence and wave propagation. Nauka, Moscow, pp 166–178
go back to reference Meier W, Boxx I, Stöhr M, Carter CD (2010) Laser-based investigations in gas turbine model combustors. Exp Fluids 49:865–882CrossRef Meier W, Boxx I, Stöhr M, Carter CD (2010) Laser-based investigations in gas turbine model combustors. Exp Fluids 49:865–882CrossRef
go back to reference Meyer TR, Fiechtner GJ, Gogineni SP, Rolon JC, Carter CD, Gord JR (2004) Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-air counterflow diffusion flames. Exp Fluids 36:259–267CrossRef Meyer TR, Fiechtner GJ, Gogineni SP, Rolon JC, Carter CD, Gord JR (2004) Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-air counterflow diffusion flames. Exp Fluids 36:259–267CrossRef
go back to reference Mueller CJ, Driscoll JF, Sutkus DJ, Roberts WL, Drake MC, Smooke MD (1995) Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction to assess flamelet models. Combust Flame 100:323–331CrossRef Mueller CJ, Driscoll JF, Sutkus DJ, Roberts WL, Drake MC, Smooke MD (1995) Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction to assess flamelet models. Combust Flame 100:323–331CrossRef
go back to reference Mueller CJ, Driscoll JF, Reuss DL, Drake MC, Rosalik ME (1998) Vorticity generation and attenuation as vortices convect through a premixed flame. Combust Flame 112:342–346CrossRef Mueller CJ, Driscoll JF, Reuss DL, Drake MC, Rosalik ME (1998) Vorticity generation and attenuation as vortices convect through a premixed flame. Combust Flame 112:342–346CrossRef
go back to reference Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43:341–355CrossRef Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43:341–355CrossRef
go back to reference Petersson P, Olofsson J, Brackman C, Seyfried H, Zetterberg J, Richter M, Aldén M, Linne MA, Cheng RK, Nauert A, Geyer D, Dreizler A (2007) Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl Opt 46:3928–3936CrossRef Petersson P, Olofsson J, Brackman C, Seyfried H, Zetterberg J, Richter M, Aldén M, Linne MA, Cheng RK, Nauert A, Geyer D, Dreizler A (2007) Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl Opt 46:3928–3936CrossRef
go back to reference Rehm JE, Clemens NT (1998) The relationship between vorticity/strain and reaction zone structure in turbulent nonpremixed jet flames. Proc Comb Inst 27:1113–1120 Rehm JE, Clemens NT (1998) The relationship between vorticity/strain and reaction zone structure in turbulent nonpremixed jet flames. Proc Comb Inst 27:1113–1120
go back to reference Renard PH, Rolon JC, Thévenin D, Candel S (1999) Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex. Combust Flame 117:189–205CrossRef Renard PH, Rolon JC, Thévenin D, Candel S (1999) Investigations of heat release, extinction, and time evolution of the flame surface, for a nonpremixed flame interacting with a vortex. Combust Flame 117:189–205CrossRef
go back to reference Renard PH, Thévenin D, Rolon JC, Candel S (2000) Dynamics of flame/vortex interactions. Prog Energy Combust Sci 26:225–282CrossRef Renard PH, Thévenin D, Rolon JC, Candel S (2000) Dynamics of flame/vortex interactions. Prog Energy Combust Sci 26:225–282CrossRef
go back to reference Sadanandan R, Stöhr M, Meier W (2008) Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor. Appl Phys B 90:609–618CrossRef Sadanandan R, Stöhr M, Meier W (2008) Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor. Appl Phys B 90:609–618CrossRef
go back to reference Steinberg AM, Boxx I, Stöhr M, Carter CD, Meier W (2010) Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust Flame 157:2250–2266CrossRef Steinberg AM, Boxx I, Stöhr M, Carter CD, Meier W (2010) Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust Flame 157:2250–2266CrossRef
go back to reference Stöhr M, Sadanandan R, Meier W (2009) Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc Combust Inst 32:2925–2932CrossRef Stöhr M, Sadanandan R, Meier W (2009) Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc Combust Inst 32:2925–2932CrossRef
go back to reference Stöhr M, Boxx I, Carter C, Meier W (2011) Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combust Inst 33:2953–2960CrossRef Stöhr M, Boxx I, Carter C, Meier W (2011) Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combust Inst 33:2953–2960CrossRef
go back to reference Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32:93–161CrossRef Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32:93–161CrossRef
go back to reference Tanahashi M, Muratami S, Choi G-M, Fukuchi Y, Miyauchi T (2005) Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc Combust Inst 30:1665–1672CrossRef Tanahashi M, Muratami S, Choi G-M, Fukuchi Y, Miyauchi T (2005) Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc Combust Inst 30:1665–1672CrossRef
go back to reference van Oudheusden BW, Scarano F, van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39:86–98CrossRef van Oudheusden BW, Scarano F, van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39:86–98CrossRef
go back to reference Watson KA, Lyons KM, Carter CD, Donbar JM (2002) Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames. Proc Combust Inst 29:1905–1912CrossRef Watson KA, Lyons KM, Carter CD, Donbar JM (2002) Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames. Proc Combust Inst 29:1905–1912CrossRef
go back to reference Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions. Combust Flame 144:205–224CrossRef Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions. Combust Flame 144:205–224CrossRef
go back to reference Wicksall DM, Agrawal AK, Schefer RW, Keller JO (2005) The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc Combust Inst 30:2875–2883CrossRef Wicksall DM, Agrawal AK, Schefer RW, Keller JO (2005) The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc Combust Inst 30:2875–2883CrossRef
Metadata
Title
Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame
Authors
M. Stöhr
R. Sadanandan
W. Meier
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Experiments in Fluids / Issue 4/2011
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1134-y

Other articles of this Issue 4/2011

Experiments in Fluids 4/2011 Go to the issue

Premium Partners