Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. Photocatalytic CO2 Reduction

Authors : Josep Albero, Hermenegildo García

Published in: Heterogeneous Photocatalysis

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the context of finding sustainable and environmentally neutral alternatives to fossil fuels, there is much current interest in the production of chemicals that can be used as fuels using solar light (solar fuels). In the present chapter, we describe the fundamentals and the current state of the art for the photocatalytic reduction of CO2, making emphasis on the importance of the co-substrate (either water, hydrogen, or other electron donors), the differences of the process with respect to the photocatalytic hydrogen generation from water, and the importance to control the selectivity towards a single product of the many possible ones. After this part describing some basic issues of the photocatalytic CO2 reduction, some of the currently more efficient photocatalysts are described, delineating similarities and differences among those materials. The final section summarizes the main points of the chapter and presents our view on future developments in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48CrossRef Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48CrossRef
2.
go back to reference Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14:154–162CrossRef Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14:154–162CrossRef
3.
go back to reference Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef
4.
go back to reference Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735CrossRef Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735CrossRef
5.
go back to reference Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827CrossRef Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827CrossRef
6.
go back to reference Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809CrossRef Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809CrossRef
7.
go back to reference Corma A, dela Torre O, Renz M, Villandier N, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378CrossRef Corma A, dela Torre O, Renz M, Villandier N, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378CrossRef
9.
go back to reference Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. Chem Sus Chem 1:26–58CrossRef Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. Chem Sus Chem 1:26–58CrossRef
10.
go back to reference Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898CrossRef Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898CrossRef
11.
go back to reference Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784CrossRef Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784CrossRef
12.
go back to reference Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175CrossRef Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175CrossRef
13.
go back to reference de_Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106CrossRef de_Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106CrossRef
14.
go back to reference Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994CrossRef Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994CrossRef
15.
go back to reference Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408CrossRef Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408CrossRef
16.
go back to reference Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201CrossRef Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201CrossRef
17.
go back to reference Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRef
18.
go back to reference Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196CrossRef Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196CrossRef
19.
go back to reference Lunde PJ (1974) Modeling, simulation, and operation of a Sabatier reactor. Ind Eng Chem Process Des Dev 13:226–233CrossRef Lunde PJ (1974) Modeling, simulation, and operation of a Sabatier reactor. Ind Eng Chem Process Des Dev 13:226–233CrossRef
20.
go back to reference Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106:249–257CrossRef Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106:249–257CrossRef
21.
go back to reference Trimm DL, Önsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84CrossRef Trimm DL, Önsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84CrossRef
22.
go back to reference Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832CrossRef
23.
go back to reference Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278CrossRef Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278CrossRef
24.
go back to reference Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef
25.
go back to reference Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRef Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRef
26.
go back to reference Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976CrossRef Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976CrossRef
27.
go back to reference Baldoví HG, Neaţu Ş, Khan A, Asiri AM, Kosa SA, Garcia H (2015) Understanding the origin of the photocatalytic CO2 reduction by Au- and Cu-loaded TiO2: a microsecond transient absorption spectroscopy study. J Phy Chem C 119:6819–6827CrossRef Baldoví HG, Neaţu Ş, Khan A, Asiri AM, Kosa SA, Garcia H (2015) Understanding the origin of the photocatalytic CO2 reduction by Au- and Cu-loaded TiO2: a microsecond transient absorption spectroscopy study. J Phy Chem C 119:6819–6827CrossRef
28.
go back to reference Chen Z, Chen C, Weinberg DR, Kang P, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chem Commun 47:12607–12609CrossRef Chen Z, Chen C, Weinberg DR, Kang P, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chem Commun 47:12607–12609CrossRef
29.
go back to reference Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRef
30.
go back to reference Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801CrossRef Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801CrossRef
31.
go back to reference Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963CrossRef Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963CrossRef
32.
go back to reference Schlögl R (2015) The revolution continues: energiewende 2.0. Angew Chem Int Ed 54:4436–4439CrossRef Schlögl R (2015) The revolution continues: energiewende 2.0. Angew Chem Int Ed 54:4436–4439CrossRef
33.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
34.
go back to reference Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069CrossRef Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069CrossRef
35.
go back to reference Yan S, Wan L, Li Z, Zou Z (2011) Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. Chem Commun 47:5632–5634CrossRef Yan S, Wan L, Li Z, Zou Z (2011) Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. Chem Commun 47:5632–5634CrossRef
36.
go back to reference Slamet HWN, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319CrossRef Slamet HWN, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319CrossRef
37.
go back to reference Ishitani O (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A: Chem 72:269–271CrossRef Ishitani O (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A: Chem 72:269–271CrossRef
38.
go back to reference Pan J, Wu X, Wang L, Liu G, Lu GQ, Cheng H-M (2011) Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363CrossRef Pan J, Wu X, Wang L, Liu G, Lu GQ, Cheng H-M (2011) Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363CrossRef
39.
go back to reference Tsai C-W, Chen HM, Liu R-S, Asakura K, Chan T-S (2011) Ni@NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J Phys Chem C 115:10180–10186CrossRef Tsai C-W, Chen HM, Liu R-S, Asakura K, Chan T-S (2011) Ni@NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J Phys Chem C 115:10180–10186CrossRef
40.
go back to reference Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef
41.
go back to reference Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H (2013) Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 6:562–577CrossRef Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H (2013) Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 6:562–577CrossRef
42.
go back to reference Katsumata K-i, Sakai K, Ikeda K, Carja G, Matsushita N, Okada K (2013) Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Mater Lett 107:138–140CrossRef Katsumata K-i, Sakai K, Ikeda K, Carja G, Matsushita N, Okada K (2013) Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Mater Lett 107:138–140CrossRef
43.
go back to reference Iguchi S, Teramura K, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catal Today 251:140–144CrossRef Iguchi S, Teramura K, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catal Today 251:140–144CrossRef
44.
go back to reference Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011CrossRef Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011CrossRef
45.
go back to reference Morikawa M, Ogura Y, Ahmed N, Kawamura S, Mikami G, Okamoto S, Izumi Y (2014) Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation. Catal Sci Technol 4:1644–1651CrossRef Morikawa M, Ogura Y, Ahmed N, Kawamura S, Mikami G, Okamoto S, Izumi Y (2014) Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation. Catal Sci Technol 4:1644–1651CrossRef
46.
go back to reference Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996–5008CrossRef Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996–5008CrossRef
47.
go back to reference Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef
48.
go back to reference Latorre-Sánchez M, Lavorato C, Puche M, Fornés V, Molinari R, Garcia H (2012) Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst. Chem Eur J 18:16774–16783CrossRef Latorre-Sánchez M, Lavorato C, Puche M, Fornés V, Molinari R, Garcia H (2012) Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst. Chem Eur J 18:16774–16783CrossRef
49.
go back to reference Yadav RK, Baeg J-O, Oh GH, Park N-J, Kong K-j, Kim J, Hwang DW, Biswas SK (2012) A photocatalyst–enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134:11455–11461CrossRef Yadav RK, Baeg J-O, Oh GH, Park N-J, Kong K-j, Kim J, Hwang DW, Biswas SK (2012) A photocatalyst–enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134:11455–11461CrossRef
Metadata
Title
Photocatalytic CO2 Reduction
Authors
Josep Albero
Hermenegildo García
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48719-8_1

Premium Partners