Skip to main content
Top
Published in: Optical and Quantum Electronics 13/2023

01-12-2023

Photonic crystal fiber sensor structure with vertical and horizontal cladding for the detection of hazardous gases

Authors: S. Mohamed Nizar, Elizabeth Caroline Britto, Margarat Michael, K. Sagadevan

Published in: Optical and Quantum Electronics | Issue 13/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The gases which are generated in the industrial areas are very harm. Knowingly or unknowing the people who work near this hazardous area are affected lot and now it is the right time to detect these harmful gases in an efficient manner. In order to sense these hazardous gases a type of sensor that should sense these gases in an efficient manner, one such sensor is Photonic Crystal Fiber (PCF). The different gases such as SO3, Sicl4, CCl4, C10H16, Sncl4 are analyzed with the same Vertical PCF (V-PCF) and Horizontal PCF (H-PCF) gas sensor which was designed earlier for the detection of SO2 gas in an efficient manner. By maintaining the same design parameters different gases are sensed and compared with the SO2 gas outputs for the wavelength range of 0.8 μm to 1 μm. A sensitivity of 65.86% and 71.80% at 1 μm for C10H16, SnCl4, and other gases may be detected with the optimized V-PCF and H-PCF gas sensor. These gases are harmful and it will cause serious issues to the human beings. The different parameters such as sensitivity, effective mode area and attenuation are analyzed for different gases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbaszadeh, A., Makouei, S., Meshgini, S.: New hybrid photonic crystal fiber gas sensor with high sensitivity for ammonia gas detection. Can. J. Phys. 100(2), 129–137 (2022)ADSCrossRef Abbaszadeh, A., Makouei, S., Meshgini, S.: New hybrid photonic crystal fiber gas sensor with high sensitivity for ammonia gas detection. Can. J. Phys. 100(2), 129–137 (2022)ADSCrossRef
go back to reference Ademgil, H.: Highly birefringent large mode area photonic crystal fiber-based sensor for interferometry applications. Mod. Phys. Lett. B 30(36), 1650422 (2016)ADSCrossRef Ademgil, H.: Highly birefringent large mode area photonic crystal fiber-based sensor for interferometry applications. Mod. Phys. Lett. B 30(36), 1650422 (2016)ADSCrossRef
go back to reference Ahmed, K., Morshed, M.: Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 7, 1–6 (2016)CrossRef Ahmed, K., Morshed, M.: Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 7, 1–6 (2016)CrossRef
go back to reference Ahmed, K., Morshed, M., Asaduzzaman, S., Arif, M.F.H.: Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber. Optik 131, 687–696 (2017)ADSCrossRef Ahmed, K., Morshed, M., Asaduzzaman, S., Arif, M.F.H.: Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber. Optik 131, 687–696 (2017)ADSCrossRef
go back to reference Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio Sens. Res. 10, 20–26 (2016)CrossRef Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio Sens. Res. 10, 20–26 (2016)CrossRef
go back to reference Chintoanu, M., Ghita, A., Aciu, A., Pitl, G., Costiug, S., Cadar, S., Cordos, E.: Methane and carbon monoxide gas detection system based on semiconductor sensor. In: 2006 IEEE International Conference on Automation, Quality and Testing, Robotics (Vol. 2, pp. 208–211). IEEE, (2006) Chintoanu, M., Ghita, A., Aciu, A., Pitl, G., Costiug, S., Cadar, S., Cordos, E.: Methane and carbon monoxide gas detection system based on semiconductor sensor. In: 2006 IEEE International Conference on Automation, Quality and Testing, Robotics (Vol. 2, pp. 208–211). IEEE, (2006)
go back to reference Chowdhury, S., Sen, S., Ahmed, K., Asaduzzaman, S.: Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing. Optik 142, 541–549 (2017)ADSCrossRef Chowdhury, S., Sen, S., Ahmed, K., Asaduzzaman, S.: Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing. Optik 142, 541–549 (2017)ADSCrossRef
go back to reference Dou, C., Jing, X., Li, S., Wu, J., Wang, Q.: Low-loss polarization filter at 1.55 μm based on photonic crystal fiber. Optik 162, 214–219 (2018)ADSCrossRef Dou, C., Jing, X., Li, S., Wu, J., Wang, Q.: Low-loss polarization filter at 1.55 μm based on photonic crystal fiber. Optik 162, 214–219 (2018)ADSCrossRef
go back to reference Hameed, M.F.O., Obayya, S.S., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3), 188–190 (2010)ADSCrossRef Hameed, M.F.O., Obayya, S.S., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3), 188–190 (2010)ADSCrossRef
go back to reference Hao, R., Li, Z., Sun, G., Niu, L., Sun, Y.: Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19(5), 363–368 (2013)ADSCrossRef Hao, R., Li, Z., Sun, G., Niu, L., Sun, Y.: Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19(5), 363–368 (2013)ADSCrossRef
go back to reference He, F.T., Shi, W.J., Zhang, J.L., Hui, Z.Q., Zhan, F.: Polarization splitter based on dual-core photonic crystal fiber with tellurite glass. Optik 164, 624–631 (2018)ADSCrossRef He, F.T., Shi, W.J., Zhang, J.L., Hui, Z.Q., Zhan, F.: Polarization splitter based on dual-core photonic crystal fiber with tellurite glass. Optik 164, 624–631 (2018)ADSCrossRef
go back to reference He, T., Wang, W., He, B. G., & Chen, J.: Review on optical fiber sensors for hazardous-gas monitoring in mines and tunnels. IEEE Transactions on Instrumentation and Measurement, (2023) He, T., Wang, W., He, B. G., & Chen, J.: Review on optical fiber sensors for hazardous-gas monitoring in mines and tunnels. IEEE Transactions on Instrumentation and Measurement, (2023)
go back to reference Hou, Y., Fan, F., Jiang, Z.W., Wang, X.H., Chang, S.J.: Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik Int. J. Light Electron. Opt. 124(17), 3095–3098 (2013)CrossRef Hou, Y., Fan, F., Jiang, Z.W., Wang, X.H., Chang, S.J.: Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik Int. J. Light Electron. Opt. 124(17), 3095–3098 (2013)CrossRef
go back to reference Islam, I., Paul, B.K., Ahmed, K., Hasan, R., Chowdhury, S., Islam, S., Asaduzzaman, S.: Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications. Sens. Bio Sens. Res. 14, 30–38 (2017)CrossRef Islam, I., Paul, B.K., Ahmed, K., Hasan, R., Chowdhury, S., Islam, S., Asaduzzaman, S.: Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications. Sens. Bio Sens. Res. 14, 30–38 (2017)CrossRef
go back to reference Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photon. Sens. 7, 234–245 (2017)ADSCrossRef Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photon. Sens. 7, 234–245 (2017)ADSCrossRef
go back to reference Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)ADSCrossRef Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)ADSCrossRef
go back to reference Leon, M.J.B.M., Disha, A.S.: A simple structure of PCF based sensor for sensing sulfur dioxide gas with high sensitivity and better birefringence. Sens. Int. 2, 100115 (2021)CrossRef Leon, M.J.B.M., Disha, A.S.: A simple structure of PCF based sensor for sensing sulfur dioxide gas with high sensitivity and better birefringence. Sens. Int. 2, 100115 (2021)CrossRef
go back to reference Mishra, G.P., Kumar, D., Chaudhary, V.S., Kumar, S.: Design and sensitivity improvement of microstructured-core photonic crystal fiber based sensor for methane and hydrogen fluoride detection. IEEE Sens. J. 22(2), 1265–1272 (2021)ADSCrossRef Mishra, G.P., Kumar, D., Chaudhary, V.S., Kumar, S.: Design and sensitivity improvement of microstructured-core photonic crystal fiber based sensor for methane and hydrogen fluoride detection. IEEE Sens. J. 22(2), 1265–1272 (2021)ADSCrossRef
go back to reference Mohamed Nizar, S., Caroline, E., Krishnan, P.: Design and investigation of a high-sensitivity PCF sensor for the detection of sulfur dioxide. Plasmonics 16(6), 2155–2165 (2021)CrossRef Mohamed Nizar, S., Caroline, E., Krishnan, P.: Design and investigation of a high-sensitivity PCF sensor for the detection of sulfur dioxide. Plasmonics 16(6), 2155–2165 (2021)CrossRef
go back to reference Morshed, M., Asaduzzaman, S., Arif, M. F. H., & Ahmed, K.: Proposal of simple gas sensor based on micro structure optical fiber. In: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), (pp. 1–5). IEEE, (2015) Morshed, M., Asaduzzaman, S., Arif, M. F. H., & Ahmed, K.: Proposal of simple gas sensor based on micro structure optical fiber. In: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), (pp. 1–5). IEEE, (2015)
go back to reference Mortazavi, S., Makouei, S., Garamaleki, S.M.: Hollow core photonic crystal fiber based carbon monoxide sensor design applicable for hyperbilirubinemia diagnosis. Opt. Eng. 62(6), 066105–066105 (2023)ADSCrossRef Mortazavi, S., Makouei, S., Garamaleki, S.M.: Hollow core photonic crystal fiber based carbon monoxide sensor design applicable for hyperbilirubinemia diagnosis. Opt. Eng. 62(6), 066105–066105 (2023)ADSCrossRef
go back to reference Nyachionjeka, K., Tarus, H., Langat, K.: Design of a photonic crystal fiber for optical communications application. Sci. Afr. 9(3), 00511 (2020) Nyachionjeka, K., Tarus, H., Langat, K.: Design of a photonic crystal fiber for optical communications application. Sci. Afr. 9(3), 00511 (2020)
go back to reference Obayya, S., Hameed, M.F.O., Areed, N.F.: Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications. John Wiley & Sons (2016)CrossRef Obayya, S., Hameed, M.F.O., Areed, N.F.: Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications. John Wiley & Sons (2016)CrossRef
go back to reference Papkovsky, D.B., Dmitriev, R.I.: Biological detection by optical oxygen sensing. Chem. Soc. Rev. 42(22), 8700–8732 (2013)CrossRef Papkovsky, D.B., Dmitriev, R.I.: Biological detection by optical oxygen sensing. Chem. Soc. Rev. 42(22), 8700–8732 (2013)CrossRef
go back to reference Park, H.J., Kim, J., Choi, N.J., Song, H., Lee, D.S.: Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl. Mater. Interfaces. 8(5), 3233–3240 (2016)CrossRef Park, H.J., Kim, J., Choi, N.J., Song, H., Lee, D.S.: Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl. Mater. Interfaces. 8(5), 3233–3240 (2016)CrossRef
go back to reference Paul, B.K., Rajesh, E., Asaduzzaman, S., Islam, M.S., Ahmed, K., Amiri, I.S., Zakaria, R.: Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results Phys. 11, 643–650 (2018)ADSCrossRef Paul, B.K., Rajesh, E., Asaduzzaman, S., Islam, M.S., Ahmed, K., Amiri, I.S., Zakaria, R.: Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results Phys. 11, 643–650 (2018)ADSCrossRef
go back to reference Paul, B.K., Ahmed, K., Dhasarathan, V., Al-Zahrani, F.A., Aktar, M.N., Uddin, M.S., Aly, A.H.: Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alex. Eng. J. 59(6), 5045–5052 (2020)CrossRef Paul, B.K., Ahmed, K., Dhasarathan, V., Al-Zahrani, F.A., Aktar, M.N., Uddin, M.S., Aly, A.H.: Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alex. Eng. J. 59(6), 5045–5052 (2020)CrossRef
go back to reference Pysz, D., Kujawa, I., Stępień, R., Klimczak, M., Filipkowski, A., Franczyk, M., Buczyński, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bullet. Polish Acad. Sci. Tech. Sci. 62(4), 667–682 (2014) Pysz, D., Kujawa, I., Stępień, R., Klimczak, M., Filipkowski, A., Franczyk, M., Buczyński, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bullet. Polish Acad. Sci. Tech. Sci. 62(4), 667–682 (2014)
go back to reference Rifat, A. A., Ahmed, K., Asaduzzaman, S., Paul, B. K., Ahmed, R.: Development of photonic crystal fiber-based gas/chemical sensors. Comput. Photon. Sens. 287–317, (2019) Rifat, A. A., Ahmed, K., Asaduzzaman, S., Paul, B. K., Ahmed, R.: Development of photonic crystal fiber-based gas/chemical sensors. Comput. Photon. Sens. 287–317, (2019)
go back to reference Romanova, V. A., Matyushkin, L. B.: Sol–gel fabrication of one-dimensional photonic crystals. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), (pp. 1423–1427). IEEE. (2017) Romanova, V. A., Matyushkin, L. B.: Sol–gel fabrication of one-dimensional photonic crystals. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), (pp. 1423–1427). IEEE. (2017)
go back to reference Russell, P.: Photon. Crystal Fibers Sci. 299(5605), 358–362 (2003) Russell, P.: Photon. Crystal Fibers Sci. 299(5605), 358–362 (2003)
go back to reference Suganthy, M., Paul, B.K., Ahmed, K., Islam, M.I., Jabin, M.A., Bahar, A.N., Rajan, M.M.: Analysis of optical sensitivity of analytes in aqua solutions. Optik 178, 970–977 (2019)ADSCrossRef Suganthy, M., Paul, B.K., Ahmed, K., Islam, M.I., Jabin, M.A., Bahar, A.N., Rajan, M.M.: Analysis of optical sensitivity of analytes in aqua solutions. Optik 178, 970–977 (2019)ADSCrossRef
go back to reference Valtna-Lukner, H., Repän, J., Valdma, S.M., Piksarv, P.: Endlessly single-mode photonic crystal fiber as a high resolution probe. Appl. Opt. 55(33), 9407–9411 (2016)ADSCrossRef Valtna-Lukner, H., Repän, J., Valdma, S.M., Piksarv, P.: Endlessly single-mode photonic crystal fiber as a high resolution probe. Appl. Opt. 55(33), 9407–9411 (2016)ADSCrossRef
go back to reference Wang, F., Chang, J., Wang, Q., Wei, W., Qin, Z.: TDLAS gas sensing system utilizing fiber reflector based round-trip structure: Double absorption path-length, residual amplitude modulation removal. Sens. Actuators A 259, 152–159 (2017)CrossRef Wang, F., Chang, J., Wang, Q., Wei, W., Qin, Z.: TDLAS gas sensing system utilizing fiber reflector based round-trip structure: Double absorption path-length, residual amplitude modulation removal. Sens. Actuators A 259, 152–159 (2017)CrossRef
go back to reference Yang, T.J., Shen, L.F., Chau, Y.F., Sung, M.J., Chen, D., Tsai, D.P.: High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding. Opt. Commun. 281(17), 4334–4338 (2008)ADSCrossRef Yang, T.J., Shen, L.F., Chau, Y.F., Sung, M.J., Chen, D., Tsai, D.P.: High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding. Opt. Commun. 281(17), 4334–4338 (2008)ADSCrossRef
go back to reference Zhao, Y., Li, X.G., Cai, L., Yang, Y.: Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sens. Actuators B Chem. 221, 406–410 (2015)CrossRef Zhao, Y., Li, X.G., Cai, L., Yang, Y.: Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sens. Actuators B Chem. 221, 406–410 (2015)CrossRef
Metadata
Title
Photonic crystal fiber sensor structure with vertical and horizontal cladding for the detection of hazardous gases
Authors
S. Mohamed Nizar
Elizabeth Caroline Britto
Margarat Michael
K. Sagadevan
Publication date
01-12-2023
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 13/2023
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05465-6

Other articles of this Issue 13/2023

Optical and Quantum Electronics 13/2023 Go to the issue