Skip to main content
Top

2017 | OriginalPaper | Chapter

Physical Channel Model for Molecular Communications

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter comes up with a brief overview of molecular communication models and modulation techniques by reviewing current research works found in the literature. The chapter also provides with an analysis of molecular communication in free diffusion-based molecular communication channel. In this model, the trasmitter nanomachine releases messenger molecules, the molecules diffuse through the channel, and the receiver nanomachine counts the received molecules to decode the information. We consider free diffusion of molecules where no additional force is required. Such a channel is referred to as the diffusion channel and can be modeled by using Ficks law of diffusion. Diffusion coefficient describes the tendency of propagation of the messenger molecules through the medium. Analysis shows that, channel memory offers a significant impact on performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Freitas RA (1999) Nanomedicine, vol 1: Basic capabilities. Landes Bioscience Georgetown, TX (1999) Freitas RA (1999) Nanomedicine, vol 1: Basic capabilities. Landes Bioscience Georgetown, TX (1999)
2.
go back to reference Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobiosci 11:135–148CrossRef Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobiosci 11:135–148CrossRef
3.
go back to reference Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput. Netw. 52:2260–2279CrossRef Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput. Netw. 52:2260–2279CrossRef
4.
go back to reference Sawai H (2011) Biological functions for information and communication technologies: theory and inspiration. Springer Sawai H (2011) Biological functions for information and communication technologies: theory and inspiration. Springer
5.
go back to reference Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobiosci 8:169–180CrossRef Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobiosci 8:169–180CrossRef
6.
go back to reference Kuran M, Yilmaz HB, Tugcu T, Akyildiz IF (2011) Modulation techniques for communication via diffusion in nanonetworks. In: 2011 IEEE International Conference on Communications (ICC), pp 1–5 Kuran M, Yilmaz HB, Tugcu T, Akyildiz IF (2011) Modulation techniques for communication via diffusion in nanonetworks. In: 2011 IEEE International Conference on Communications (ICC), pp 1–5
7.
go back to reference Kim NR, Chae CB (2013) Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion. IEEE J Sel Areas Commun 31:847–856CrossRef Kim NR, Chae CB (2013) Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion. IEEE J Sel Areas Commun 31:847–856CrossRef
8.
go back to reference Kadloor S, Adve R (2009) A framework to study the molecular communication system. In: Proceedings of 18th International Conference on Computer Communication Networks, pp 1–6 Kadloor S, Adve R (2009) A framework to study the molecular communication system. In: Proceedings of 18th International Conference on Computer Communication Networks, pp 1–6
9.
go back to reference ShahMohammadian H, Messier GG, Magierowski S (2012) Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels. Nano Commun Netw 3:183–195CrossRef ShahMohammadian H, Messier GG, Magierowski S (2012) Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels. Nano Commun Netw 3:183–195CrossRef
10.
go back to reference Tyrrell H, Harris K (1984) Diffusion in liquids: a theoretical and experimental study. Butterworth-Heinemann Tyrrell H, Harris K (1984) Diffusion in liquids: a theoretical and experimental study. Butterworth-Heinemann
11.
go back to reference Kuran M, Yilmaz HB, Tugcu T, Zerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1:86–95 Kuran M, Yilmaz HB, Tugcu T, Zerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1:86–95
12.
go back to reference Redner S (2001) A guide to first-passage processes. Cambridge University Press Redner S (2001) A guide to first-passage processes. Cambridge University Press
13.
go back to reference Srinivas KV, Eckford AW, Adve RS (2012) Molecular communication in fluid media: the additive inverse Gaussian noise channel. IEEE Trans Inf Theory 58:4678–4692MathSciNetCrossRef Srinivas KV, Eckford AW, Adve RS (2012) Molecular communication in fluid media: the additive inverse Gaussian noise channel. IEEE Trans Inf Theory 58:4678–4692MathSciNetCrossRef
14.
go back to reference Khormuji MN (2011) On the capacity of molecular communication over the AIGN channel. In: 2011 45th annual Conference on Information Sciences and Systems (CISS), pp 1–4 Khormuji MN (2011) On the capacity of molecular communication over the AIGN channel. In: 2011 45th annual Conference on Information Sciences and Systems (CISS), pp 1–4
15.
go back to reference Miorandi D (2011) A stochastic model for molecular communications. Nano Commun Netw 2:205–212CrossRef Miorandi D (2011) A stochastic model for molecular communications. Nano Commun Netw 2:205–212CrossRef
16.
go back to reference Einolghozati A, Sardari M, Beirami A, Fekri F (2011) Capacity of discrete molecular diffusion channels. In: 2011 IEEE international symposium on Information Theory Proceedings (ISIT), pp 723–727 Einolghozati A, Sardari M, Beirami A, Fekri F (2011) Capacity of discrete molecular diffusion channels. In: 2011 IEEE international symposium on Information Theory Proceedings (ISIT), pp 723–727
17.
go back to reference Berg HC (1993) Random walks in biology. Princeton University Press Berg HC (1993) Random walks in biology. Princeton University Press
18.
go back to reference De Kievit TR, Iglewski BH (2000) Bacterial quorumsensing in pathogenic relationships. Infecti Immun 68:4839–4849CrossRef De Kievit TR, Iglewski BH (2000) Bacterial quorumsensing in pathogenic relationships. Infecti Immun 68:4839–4849CrossRef
19.
go back to reference Eckford AW (2007) Nanoscale communication with brownian motion. In: Proceedings of 41st annual conference on information sciences and systems, pp 160–165 Eckford AW (2007) Nanoscale communication with brownian motion. In: Proceedings of 41st annual conference on information sciences and systems, pp 160–165
20.
go back to reference Eckford AW (2007) Achievable information rates for molecular communication with distinct molecules. In: Proceedings of workshop computer communications from biological systems: theory and applications, pp 313–315 Eckford AW (2007) Achievable information rates for molecular communication with distinct molecules. In: Proceedings of workshop computer communications from biological systems: theory and applications, pp 313–315
21.
go back to reference Okaie Y, Nakano T (2012) Nanomachine placement strategies for detecting Brownian molecules in nanonetworks. In: Proceedings of IEEE Wireless Communication Networking Conference (WCNC), pp 1755–1759 Okaie Y, Nakano T (2012) Nanomachine placement strategies for detecting Brownian molecules in nanonetworks. In: Proceedings of IEEE Wireless Communication Networking Conference (WCNC), pp 1755–1759
22.
go back to reference Eckford AW, Farsad N, Hiyama S, Moritani Y (2010) Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of IEEE international conference on nanotechnologies, pp 854–858 Eckford AW, Farsad N, Hiyama S, Moritani Y (2010) Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of IEEE international conference on nanotechnologies, pp 854–858
23.
go back to reference Eckford AW (2009) Timing information rates for active transport molecular communication. In: Nano-Networks, pp 24–28 Eckford AW (2009) Timing information rates for active transport molecular communication. In: Nano-Networks, pp 24–28
24.
go back to reference Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell (1994) Garland. New York, pp 139–194 Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell (1994) Garland. New York, pp 139–194
25.
go back to reference Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2007) Molecular communication through gap junction channels: system design, experiments and modeling. In: Proceedings of International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS, pp 139–146 (2007) Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2007) Molecular communication through gap junction channels: system design, experiments and modeling. In: Proceedings of International Conference on Bio-Inspired Models of Network, Information and Computing Systems, BIONETICS, pp 139–146 (2007)
26.
go back to reference Hiyama H, Moritani Y, Suda T (2009) A biochemically engineered molecular communication system. Nano Networks, pp 85–94 Hiyama H, Moritani Y, Suda T (2009) A biochemically engineered molecular communication system. Nano Networks, pp 85–94
27.
go back to reference Oiwa K, Sakakibara H (2005) Recent progress in dynein structure and mechanism. Current Opin Cell Biol 17:98–103CrossRef Oiwa K, Sakakibara H (2005) Recent progress in dynein structure and mechanism. Current Opin Cell Biol 17:98–103CrossRef
28.
go back to reference Shima T, Kon T, Imamula K, Ohkura R, Sutoh K (2006) Two modes of microtubule sliding driven by cytoplasmic dynein. Proc Natl Acad Sci 103:17736–17740CrossRef Shima T, Kon T, Imamula K, Ohkura R, Sutoh K (2006) Two modes of microtubule sliding driven by cytoplasmic dynein. Proc Natl Acad Sci 103:17736–17740CrossRef
29.
go back to reference Toba S, Oiwa K (2006) Swing or embrace. New aspects of motility inspired by dynein structure in situ. Bioforum Eur 10:14–16 Toba S, Oiwa K (2006) Swing or embrace. New aspects of motility inspired by dynein structure in situ. Bioforum Eur 10:14–16
30.
go back to reference Kuscu M, Akan OB (2012) A physical channel model and analysis for nanoscale molecular communication with Forster Resonance Energy Transfer (FRET). IEEE Trans Nanotechnol 11:200–207CrossRef Kuscu M, Akan OB (2012) A physical channel model and analysis for nanoscale molecular communication with Forster Resonance Energy Transfer (FRET). IEEE Trans Nanotechnol 11:200–207CrossRef
31.
go back to reference Kabir MH, Kwak KS (2013) Molecular nanonetwork channel model. Electron Lett 49:1285–1287CrossRef Kabir MH, Kwak KS (2013) Molecular nanonetwork channel model. Electron Lett 49:1285–1287CrossRef
32.
go back to reference Socolofsky SA, Jirka GH (2005) CVEN 489-501: Special Topics in Mixing and Transport Processes in the Environment. In: EngineeringLectures. 5th edn., vol 3136. Coastal and Ocean Engineering Division, Texas A&M University, MS, p 77843 Socolofsky SA, Jirka GH (2005) CVEN 489-501: Special Topics in Mixing and Transport Processes in the Environment. In: EngineeringLectures. 5th edn., vol 3136. Coastal and Ocean Engineering Division, Texas A&M University, MS, p 77843
33.
go back to reference Kabir MH, Kwak KS (2014) Effect of memory on BER in molecular communication. Electron Lett 50:71–72CrossRef Kabir MH, Kwak KS (2014) Effect of memory on BER in molecular communication. Electron Lett 50:71–72CrossRef
34.
go back to reference Leeson MS, Higgins MD (2012) Forward error correction for molecular communications. Nano Commun Netw 3:161–167CrossRef Leeson MS, Higgins MD (2012) Forward error correction for molecular communications. Nano Commun Netw 3:161–167CrossRef
35.
go back to reference Pierobon M, Akyildiz IF (2011) Information capacity of diffusion-based molecular communication in nanonetworks. In: INFOCOM, 2011 Proc IEEE, pp 506–510 Pierobon M, Akyildiz IF (2011) Information capacity of diffusion-based molecular communication in nanonetworks. In: INFOCOM, 2011 Proc IEEE, pp 506–510
36.
go back to reference Nakano T, Okaie Y, Jian-Qin L (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16:797–800CrossRef Nakano T, Okaie Y, Jian-Qin L (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16:797–800CrossRef
Metadata
Title
Physical Channel Model for Molecular Communications
Authors
Humaun Kabir
Kyung Sup Kwak
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50688-3_3