Skip to main content
Top

2017 | OriginalPaper | Chapter

Physical Interaction via Dynamic Primitives

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Humans out-perform contemporary robots despite vastly slower ‘wetware’ (e.g. neurons) and ‘hardware’ (e.g. muscles). The basis of human sensory-motor performance appears to be quite different from that of robots. Human haptic perception is not compatible with Riemannian geometry, the foundation of classical mechanics and robot control. Instead, evidence suggests that human control is based on dynamic primitives, which enable highly dynamic behavior with minimal high-level supervision and intervention. Motion primitives include submovements (discrete actions) and oscillations (rhythmic behavior). Adding mechanical impedance as a class of dynamic primitives facilitates controlling physical interaction. Both motion and interaction primitives may be combined by re-purposing the classical equivalent electric circuit and extending it to a nonlinear equivalent network. It highlights the contrast between the dynamics of physical systems and the dynamics of computation and information processing. Choosing appropriate task-specific impedance may be cast as a stochastic optimization problem, though its solution remains challenging. The composability of dynamic primitives, including mechanical impedances, enables complex tasks, including multi-limb coordination, to be treated as a composite of simpler tasks, each represented by an equivalent network. The most useful form of nonlinear equivalent network requires the interactive dynamics to respond to deviations from the motion that would occur without interaction. That suggests some form of underlying geometric structure but which geometry is induced by a composition of motion and interactive dynamic primitives? Answering that question might pave the way to achieve superior robot control and seamless human-robot collaboration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Twitch contraction time is the time from an impulsive stimulus (e.g. electrical) to peak isometric tension.
 
2
This is one advantage of a Phillips (cross-head) screwdriver, invented by John P. Thompson, U.S. Patent 1,908,080 May 9, 1933, assigned to Henry F. Phillips.
 
3
This result may be extended to large \(\Delta \theta \) and \(\Delta x\): for any \(\Delta x\) imposed within the workspace, at equilibrium the linkage assumes a pose that minimizes total potential energy; the analysis is omitted for brevity.
 
4
When it can be computed; in some configurations and some directions, e.g., arm fully outstretched, compliance approaches zero and stiffness approaches infinity.
 
Literature
1.
go back to reference C. Abul-Haj, N. Hogan, An emulator system for developing improved elbow-prosthesis designs. IEEE Trans. Biomed. Eng. 34, 724–737 (1987)CrossRef C. Abul-Haj, N. Hogan, An emulator system for developing improved elbow-prosthesis designs. IEEE Trans. Biomed. Eng. 34, 724–737 (1987)CrossRef
2.
go back to reference C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 1. Description of the technique. IEEE Trans. Biomed. Eng. 37, 1025–1036 (1990a)CrossRef C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 1. Description of the technique. IEEE Trans. Biomed. Eng. 37, 1025–1036 (1990a)CrossRef
3.
go back to reference C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 2. Application of the technique. IEEE Trans. Biomed. Eng. 37, 1037–1047 (1990b)CrossRef C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 2. Application of the technique. IEEE Trans. Biomed. Eng. 37, 1037–1047 (1990b)CrossRef
4.
go back to reference J. Ahn, N. Hogan, A simple state-determined model reproduces entrainment and phase-locking of human walking dynamics. PLoS ONE 7, e47963 (2012a)CrossRef J. Ahn, N. Hogan, A simple state-determined model reproduces entrainment and phase-locking of human walking dynamics. PLoS ONE 7, e47963 (2012a)CrossRef
5.
go back to reference J. Ahn, N. Hogan, Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7, e31767 (2012b)CrossRef J. Ahn, N. Hogan, Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7, e31767 (2012b)CrossRef
6.
go back to reference J.R. Andrews, N. Hogan, Impedance Control as a Framework for Implementing Obstacle Avoidance in a Manipulator, in BOOK, D. E. H. A. W. J. (ed.) Control of Manufacturing Processes and Robotic Systems (ASME, 1983) J.R. Andrews, N. Hogan, Impedance Control as a Framework for Implementing Obstacle Avoidance in a Manipulator, in BOOK, D. E. H. A. W. J. (ed.) Control of Manufacturing Processes and Robotic Systems (ASME, 1983)
7.
go back to reference A.J. Bastian, T.A. Martin, J.G. Keating, W.T. Thach, Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996) A.J. Bastian, T.A. Martin, J.G. Keating, W.T. Thach, Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996)
8.
go back to reference A. Bissal, J. Magnusson, E. Salinas, G. Engdahl, A. Eriksson, On the design of ultra-fast electromechanical actuators: a comprehensive multi-physical simulation model, in Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF) (2012) A. Bissal, J. Magnusson, E. Salinas, G. Engdahl, A. Eriksson, On the design of ultra-fast electromechanical actuators: a comprehensive multi-physical simulation model, in Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF) (2012)
9.
go back to reference T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, D.G. Caldwell, Dynamic torque control of a hydraulic quadruped robot, in IEEE International Conference on Robotics and Automation (IEEE, Saint Paul, Minnesota, USA, 2012) T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, D.G. Caldwell, Dynamic torque control of a hydraulic quadruped robot, in IEEE International Conference on Robotics and Automation (IEEE, Saint Paul, Minnesota, USA, 2012)
10.
go back to reference C. Boesch, H. Boesch, Tool use and tool making in wild chimpanzees. Folia Primatologica 54, 86–99 (1990)CrossRef C. Boesch, H. Boesch, Tool use and tool making in wild chimpanzees. Folia Primatologica 54, 86–99 (1990)CrossRef
11.
go back to reference D.J. Braun, S. Apte, O. Adiyatov, A. Dahiya, N. Hogan, Compliant actuation for energy efficient impedance modulation, in IEEE International Conference on Robotics and Automation (2016) D.J. Braun, S. Apte, O. Adiyatov, A. Dahiya, N. Hogan, Compliant actuation for energy efficient impedance modulation, in IEEE International Conference on Robotics and Automation (2016)
12.
go back to reference J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J. Robot. Res. 30, 820–833 (2011)CrossRef J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J. Robot. Res. 30, 820–833 (2011)CrossRef
13.
go back to reference M. Cohen, T. Flash, Learning impedance parameters for robot control using an associative search network. IEEE Trans. Robot. Autom. 7, 382–390 (1991)CrossRef M. Cohen, T. Flash, Learning impedance parameters for robot control using an associative search network. IEEE Trans. Robot. Autom. 7, 382–390 (1991)CrossRef
14.
go back to reference E. Colgate, On the intrinsic limitations of force feedback compliance controllers, in Robotics Research - 1989, eds. by K. Youcef-Toumi, H. Kazerooni (ASME, 1989) E. Colgate, On the intrinsic limitations of force feedback compliance controllers, in Robotics Research - 1989, eds. by K. Youcef-Toumi, H. Kazerooni (ASME, 1989)
16.
go back to reference J.E. Colgate, N. Hogan, The interaction of robots with passive environments: application to force feedback control, in Fourth International Conference on Advanced Robotics, June 13–15 (Columbus, Ohio, 1989) J.E. Colgate, N. Hogan, The interaction of robots with passive environments: application to force feedback control, in Fourth International Conference on Advanced Robotics, June 13–15 (Columbus, Ohio, 1989)
17.
go back to reference J.J. Collins, C.J. de Luca, Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308–318 (1993)CrossRef J.J. Collins, C.J. de Luca, Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308–318 (1993)CrossRef
18.
go back to reference F. Crevecoeur, J. McIntyre, J.L. Thonnard, P. Lefèvre, Movement stability under uncertain internal models of dynamics. J. Neurophysiol. 104, 1301–1313 (2010)CrossRef F. Crevecoeur, J. McIntyre, J.L. Thonnard, P. Lefèvre, Movement stability under uncertain internal models of dynamics. J. Neurophysiol. 104, 1301–1313 (2010)CrossRef
19.
go back to reference A. de Rugy, D. Sternad, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation against oscillatory movements. Brain Res. 994, 160–174 (2003)CrossRef A. de Rugy, D. Sternad, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation against oscillatory movements. Brain Res. 994, 160–174 (2003)CrossRef
20.
go back to reference S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybern. 103, 319–338 (2010)CrossRefMATH S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybern. 103, 319–338 (2010)CrossRefMATH
21.
go back to reference R. Deits, R. Tedrake, Efficient mixed-integer planning for UAVs in cluttered environments, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Seattle, WA, 2015) R. Deits, R. Tedrake, Efficient mixed-integer planning for UAVs in cluttered environments, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Seattle, WA, 2015)
22.
go back to reference J.A. Doeringer, N. Hogan, Intermittency in preplanned elbow movements persists in the absence of visual feedback. J. Neurophysiol. 80, 1787–1799 (1998a) J.A. Doeringer, N. Hogan, Intermittency in preplanned elbow movements persists in the absence of visual feedback. J. Neurophysiol. 80, 1787–1799 (1998a)
23.
go back to reference J.A. Doeringer, N. Hogan, Serial processing in human movement production. Neural Netw. 11, 1345–1356 (1998b)CrossRef J.A. Doeringer, N. Hogan, Serial processing in human movement production. Neural Netw. 11, 1345–1356 (1998b)CrossRef
24.
go back to reference J. Englsberger, C. Ott, A. Albu-Schaffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31, 355–368 (2015)CrossRef J. Englsberger, C. Ott, A. Albu-Schaffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31, 355–368 (2015)CrossRef
25.
go back to reference C.W. Eurich, J.G. Milton, Noise-induced transitions in human postural sway. Phys. Rev. E 54, 6681–6684 (1996)CrossRef C.W. Eurich, J.G. Milton, Noise-induced transitions in human postural sway. Phys. Rev. E 54, 6681–6684 (1996)CrossRef
26.
go back to reference E.D. Fasse, N. Hogan, B.A. Kay, F.A. Mussa-Ivaldi, Haptic interaction with virtual objects - spatial perception and motor control. Biol. Cybern. 82, 69–83 (2000)CrossRef E.D. Fasse, N. Hogan, B.A. Kay, F.A. Mussa-Ivaldi, Haptic interaction with virtual objects - spatial perception and motor control. Biol. Cybern. 82, 69–83 (2000)CrossRef
27.
go back to reference J. Flanagan, P. Vetter, R. Johansson, D. Wolpert, Prediction precedes control in motor learning. Curr. Biol. 13, 146–150 (2003)CrossRef J. Flanagan, P. Vetter, R. Johansson, D. Wolpert, Prediction precedes control in motor learning. Curr. Biol. 13, 146–150 (2003)CrossRef
28.
go back to reference J.R. Flanagan, A.K. Rao, Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J. Neurophysiol. 74, 2174–2178 (1995) J.R. Flanagan, A.K. Rao, Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J. Neurophysiol. 74, 2174–2178 (1995)
29.
go back to reference T. Flash, N. Hogan, The coordination of arm movements - an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985) T. Flash, N. Hogan, The coordination of arm movements - an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)
30.
go back to reference H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–120 (1996)CrossRef H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–120 (1996)CrossRef
31.
go back to reference P. Gribble, D.J. Ostry, V. Sanguinetti, R. Laboissiere, Are complex control signals required for human arm movement? J. Neurophysiol. 79, 1409–1424 (1998) P. Gribble, D.J. Ostry, V. Sanguinetti, R. Laboissiere, Are complex control signals required for human arm movement? J. Neurophysiol. 79, 1409–1424 (1998)
32.
go back to reference O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925a)MATH O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925a)MATH
33.
go back to reference O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925b)MATH O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925b)MATH
34.
go back to reference H.V. Helmholtz, II. Uber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche [Some laws concerning the distribution of electrical currents in conductors with applications to experiments on animal electricity]. Annalen der Physik und Chemie 89, 211–233 (1853)CrossRef H.V. Helmholtz, II. Uber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche [Some laws concerning the distribution of electrical currents in conductors with applications to experiments on animal electricity]. Annalen der Physik und Chemie 89, 211–233 (1853)CrossRef
35.
go back to reference A.J. Hodgson, Inferring Central Motor Plans from Attractor Trajectory Measurements, Ph.D, Institute of Technology, Massachusetts, 1994 A.J. Hodgson, Inferring Central Motor Plans from Attractor Trajectory Measurements, Ph.D, Institute of Technology, Massachusetts, 1994
36.
go back to reference A.J. Hodgson, N. Hogan, A model-independent definition of attractor behavior applicable to interactive tasks. IEEE Trans. Syst. Man Cybern. Part C- Appl. Rev. 30, 105–118 (2000)CrossRef A.J. Hodgson, N. Hogan, A model-independent definition of attractor behavior applicable to interactive tasks. IEEE Trans. Syst. Man Cybern. Part C- Appl. Rev. 30, 105–118 (2000)CrossRef
37.
go back to reference J.A. Hoffer, S. Andreassen, Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J. Neurophysiol. 45, 267–285 (1981) J.A. Hoffer, S. Andreassen, Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J. Neurophysiol. 45, 267–285 (1981)
38.
go back to reference N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29, 681–690 (1984)CrossRefMATH N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29, 681–690 (1984)CrossRefMATH
39.
go back to reference N. Hogan, Impedance control - an approach to manipulation. 1. Theory. J. Dyn. Syst. Meas. Control Trans. Asme 107, 1–7 (1985a)CrossRefMATH N. Hogan, Impedance control - an approach to manipulation. 1. Theory. J. Dyn. Syst. Meas. Control Trans. Asme 107, 1–7 (1985a)CrossRefMATH
40.
go back to reference N. Hogan, Impedance control - an approach to manipulation. 2. Implementation. J. Dyn. Syst. Meas. Control Trans. Asme 107, 8–16 (1985b)CrossRefMATH N. Hogan, Impedance control - an approach to manipulation. 2. Implementation. J. Dyn. Syst. Meas. Control Trans. Asme 107, 8–16 (1985b)CrossRefMATH
41.
go back to reference N. Hogan, Impedance control - an approach to manipulation. 3. Applications. J. Dyn. Syst. Meas. Control Trans. Asme 107, 17–24 (1985c)CrossRefMATH N. Hogan, Impedance control - an approach to manipulation. 3. Applications. J. Dyn. Syst. Meas. Control Trans. Asme 107, 17–24 (1985c)CrossRefMATH
42.
go back to reference N. Hogan, Mechanical impedance of single-and multi-articular systems, in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J. Winters, S. Woo (Springer, New York, 1990) N. Hogan, Mechanical impedance of single-and multi-articular systems, in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J. Winters, S. Woo (Springer, New York, 1990)
43.
go back to reference N. Hogan, A general actuator model based on nonlinear equivalent networks. IEEE/ASME Trans. Mechatron. 19, 1929–1939 (2014)CrossRef N. Hogan, A general actuator model based on nonlinear equivalent networks. IEEE/ASME Trans. Mechatron. 19, 1929–1939 (2014)CrossRef
44.
go back to reference N. Hogan, S.P. Buerger, Impedance and interaction control, in Robotics and Automation Handbook, ed by T.R. Kurfess (CRC Press, Boca Raton, FL, 2005) N. Hogan, S.P. Buerger, Impedance and interaction control, in Robotics and Automation Handbook, ed by T.R. Kurfess (CRC Press, Boca Raton, FL, 2005)
45.
go back to reference N. Hogan, B.A. Kay, E.D. Fasse, F.A. Mussaivaldi, Haptic illusions - experiments on human manipulation and perception of virtual objects. Cold Spring Harbor Symp. Quant. Biol. 55, 925–931 (1990)CrossRef N. Hogan, B.A. Kay, E.D. Fasse, F.A. Mussaivaldi, Haptic illusions - experiments on human manipulation and perception of virtual objects. Cold Spring Harbor Symp. Quant. Biol. 55, 925–931 (1990)CrossRef
46.
go back to reference N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehab. Res. Dev. 43, 605–618 (2006)CrossRef N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehab. Res. Dev. 43, 605–618 (2006)CrossRef
48.
go back to reference N. Hogan, D. Sternad, Dynamic primitives in the control of locomotion. Front. Comput. Neurosci. 7, 1–16 (2013)CrossRef N. Hogan, D. Sternad, Dynamic primitives in the control of locomotion. Front. Comput. Neurosci. 7, 1–16 (2013)CrossRef
49.
go back to reference L.A. Hosford, Development and Testing of an Impedance Controller on an Anthropomorphic Robot for Extreme Environment Operations, Master of Science, Massachusetts Institute of Technology (2016) L.A. Hosford, Development and Testing of an Impedance Controller on an Anthropomorphic Robot for Extreme Environment Operations, Master of Science, Massachusetts Institute of Technology (2016)
50.
go back to reference D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles, in Motor Control Mechanisms in Health and Disease, ed. by J.E. Desmedt (Raven Press, New York, 1983) D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles, in Motor Control Mechanisms in Health and Disease, ed. by J.E. Desmedt (Raven Press, New York, 1983)
51.
go back to reference G.R. Hunt, Manufacture and use of hook-tools by New Caledonian crows. Nature 379, 259–251 (1996) G.R. Hunt, Manufacture and use of hook-tools by New Caledonian crows. Nature 379, 259–251 (1996)
52.
go back to reference A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)MathSciNetCrossRefMATH A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)MathSciNetCrossRefMATH
53.
go back to reference S.H. Johnson-Frey, The neural basis of complex tool use in humans. Trends Cogn. Sci. 8, 71–78 (2004)CrossRef S.H. Johnson-Frey, The neural basis of complex tool use in humans. Trends Cogn. Sci. 8, 71–78 (2004)CrossRef
54.
go back to reference D.H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proc. IEEE 91, 817–821 (2003a)CrossRef D.H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proc. IEEE 91, 817–821 (2003a)CrossRef
55.
go back to reference D.H. Johnson, Origins of the equivalent circuit concept: the voltage-source equivalent. Proc. IEEE 91, 636–640 (2003b)CrossRef D.H. Johnson, Origins of the equivalent circuit concept: the voltage-source equivalent. Proc. IEEE 91, 636–640 (2003b)CrossRef
56.
go back to reference E.R. Kandel, J.H. Schwartz, T.M. Jessell (eds.), Principles of Neural Science (McGraw-Hill, New York, 2000) E.R. Kandel, J.H. Schwartz, T.M. Jessell (eds.), Principles of Neural Science (McGraw-Hill, New York, 2000)
57.
go back to reference M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999)CrossRef M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999)CrossRef
58.
go back to reference J.A. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R1000–R1004 (1984) J.A. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R1000–R1004 (1984)
59.
go back to reference J.A.S. Kelso, On the oscillatory basis of movement. Bull. Psychon. Soc. 18, 49–70 (1981) J.A.S. Kelso, On the oscillatory basis of movement. Bull. Psychon. Soc. 18, 49–70 (1981)
60.
go back to reference B. Kenward, A.A.S. Weir, C. Rutz, A. Kacelnik, Behavioral ecology: Tool manufacture by naïve juvenile crows. Nature 433 (2005) B. Kenward, A.A.S. Weir, C. Rutz, A. Kacelnik, Behavioral ecology: Tool manufacture by naïve juvenile crows. Nature 433 (2005)
61.
go back to reference H.I. Krebs, M.L. Aisen, B.T. Volpe, N. Hogan, Quantization of continuous arm movements in humans with brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 4645–4649 (1999)CrossRef H.I. Krebs, M.L. Aisen, B.T. Volpe, N. Hogan, Quantization of continuous arm movements in humans with brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 4645–4649 (1999)CrossRef
62.
go back to reference S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Auton. Robot. 40, 429–455 (2016)CrossRef S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Auton. Robot. 40, 429–455 (2016)CrossRef
63.
go back to reference T.M. Kunnapas, An analysis of the "vertical-horizontal illusion". J. Exp. Psychol. 49, 134–140 (1955)CrossRef T.M. Kunnapas, An analysis of the "vertical-horizontal illusion". J. Exp. Psychol. 49, 134–140 (1955)CrossRef
64.
go back to reference J.R. Lackner, P. Dizio, Rapid adaptation to coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994) J.R. Lackner, P. Dizio, Rapid adaptation to coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994)
65.
go back to reference H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles. J. Biomech. 44, 1901–1908 (2011)CrossRef H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles. J. Biomech. 44, 1901–1908 (2011)CrossRef
66.
go back to reference H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 44–52 (2013) H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 44–52 (2013)
67.
go back to reference H. Lee, N. Hogan, Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehab. Eng. (2014) H. Lee, N. Hogan, Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehab. Eng. (2014)
68.
go back to reference H. Lee, N. Hogan, Energetic passivity of the human ankle joint. IEEE Trans. Neural Syst. Rehab. Eng. (2016) H. Lee, N. Hogan, Energetic passivity of the human ankle joint. IEEE Trans. Neural Syst. Rehab. Eng. (2016)
69.
go back to reference H. Lee, H. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 971–981 (2014a)CrossRef H. Lee, H. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 971–981 (2014a)CrossRef
70.
go back to reference H. Lee, H.I. Krebs, N. Hogan, Linear time-varying identification of ankle mechanical impedance during human walking, in 5th Annual Dynamic Systems and Control Conference (ASME, Fort Lauderdale, Florida, USA, 2012) H. Lee, H.I. Krebs, N. Hogan, Linear time-varying identification of ankle mechanical impedance during human walking, in 5th Annual Dynamic Systems and Control Conference (ASME, Fort Lauderdale, Florida, USA, 2012)
71.
go back to reference H. Lee, H.I. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 1104–1114 (2014b)CrossRef H. Lee, H.I. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 1104–1114 (2014b)CrossRef
72.
go back to reference Y. Li, S.S. GE, Impedance learning for robots interacting with unknown environments. IEEE Trans. Control Syst. Technol. 22 (2014) Y. Li, S.S. GE, Impedance learning for robots interacting with unknown environments. IEEE Trans. Control Syst. Technol. 22 (2014)
73.
go back to reference F.M. Marchetti, S.J. Lederman, The haptic radial-tangential effect: two tests of Wong’s ’moments-of-inertia’ hypothesis. Bull. Psychon. Soc. 21, 43–46 (1983)CrossRef F.M. Marchetti, S.J. Lederman, The haptic radial-tangential effect: two tests of Wong’s ’moments-of-inertia’ hypothesis. Bull. Psychon. Soc. 21, 43–46 (1983)CrossRef
74.
go back to reference J.C. Maxwell, A Treatise on Electricity and Magnetism (1873) J.C. Maxwell, A Treatise on Electricity and Magnetism (1873)
75.
go back to reference H.F. Mayer, Ueber das Ersatzschema der Verstärkerröhre [On equivalent circuits for electronic amplifiers]. Telegraphen- und Fernsprech-Technik 15, 335–337 (1926) H.F. Mayer, Ueber das Ersatzschema der Verstärkerröhre [On equivalent circuits for electronic amplifiers]. Telegraphen- und Fernsprech-Technik 15, 335–337 (1926)
76.
go back to reference Moog, Moog G761/761 Series Flow Control Servovalves (Moog Inc, 2014) Moog, Moog G761/761 Series Flow Control Servovalves (Moog Inc, 2014)
77.
go back to reference J.M. Morgan, W.W. Milligan, A 1 kHz servohydraulic fatigue testing system, in Conference on High Cycle Fatigue of Structural Materials, ed. by Srivatsan, W. O. S. A. T. S. (Warrendale, PA, 1997) J.M. Morgan, W.W. Milligan, A 1 kHz servohydraulic fatigue testing system, in Conference on High Cycle Fatigue of Structural Materials, ed. by Srivatsan, W. O. S. A. T. S. (Warrendale, PA, 1997)
78.
go back to reference W.S. Newman, N. Hogan, High speed robot control and obstacle avoidance using dynamic potential functions, in IEEE International Conference on Robotics and Automation (IEEE, New Jersey, 1987) W.S. Newman, N. Hogan, High speed robot control and obstacle avoidance using dynamic potential functions, in IEEE International Conference on Robotics and Automation (IEEE, New Jersey, 1987)
79.
go back to reference I. Newton, Philosophiæ Naturalis Principia Mathematica (1687) I. Newton, Philosophiæ Naturalis Principia Mathematica (1687)
80.
go back to reference T.R. Nichols, J.C. Houk, Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J. Neurophysiol. 39, 119–142 (1976) T.R. Nichols, J.C. Houk, Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J. Neurophysiol. 39, 119–142 (1976)
81.
go back to reference E.L. Norton, Design of Finite Networks for Uniform Frequency Characteristic (Western Electric Company Inc, New York, 1926) E.L. Norton, Design of Finite Networks for Uniform Frequency Characteristic (Western Electric Company Inc, New York, 1926)
82.
go back to reference J. Ochoa, D. Sternad, N. Hogan, Entrainment of overground human walking to mechanical perturbations at the ankle joint, in International Conference on Biomedical Robotics and Biomechatronics (BioRob) (IEEE, Singapore, 2016) J. Ochoa, D. Sternad, N. Hogan, Entrainment of overground human walking to mechanical perturbations at the ankle joint, in International Conference on Biomedical Robotics and Biomechatronics (BioRob) (IEEE, Singapore, 2016)
83.
go back to reference L.U. Odhner, L.P. Jentoft, M.R. Claffee, N. Corson, Y. Tenzer, R.R. Ma, M. Buehler, R. Kohout, R.D. Howe, A.M. Dollar, A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33, 736–752 (2014)CrossRef L.U. Odhner, L.P. Jentoft, M.R. Claffee, N. Corson, Y. Tenzer, R.R. Ma, M. Buehler, R. Kohout, R.D. Howe, A.M. Dollar, A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33, 736–752 (2014)CrossRef
84.
go back to reference N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19, 1080–1091 (2014)CrossRef N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19, 1080–1091 (2014)CrossRef
85.
go back to reference R. Plamondon, A.M. Alimi, P. Yergeau, F. Leclerc, Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69, 119–128 (1993)CrossRef R. Plamondon, A.M. Alimi, P. Yergeau, F. Leclerc, Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69, 119–128 (1993)CrossRef
86.
go back to reference R.A. Popat, D.E. Krebs, J. Mansfield, D. Russell, E. Clancy, K.M. Gillbody, N. Hogan, Quantitative assessment of 4 men using above-elbow prosthetic control. Arch. Phys. Med. Rehab. 74, 720–729 (1993)CrossRef R.A. Popat, D.E. Krebs, J. Mansfield, D. Russell, E. Clancy, K.M. Gillbody, N. Hogan, Quantitative assessment of 4 men using above-elbow prosthetic control. Arch. Phys. Med. Rehab. 74, 720–729 (1993)CrossRef
87.
go back to reference J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Humanoids 2006 (IEEE, New Jersey, 2006) J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Humanoids 2006 (IEEE, New Jersey, 2006)
88.
go back to reference D. Rancourt, N. Hogan, Dynamics of pushing. J. Mot. Behav. 33, 351–362 (2001a)CrossRef D. Rancourt, N. Hogan, Dynamics of pushing. J. Mot. Behav. 33, 351–362 (2001a)CrossRef
89.
go back to reference D. Rancourt, N. Hogan, Stability in force-production tasks. J. Mot. Behav. 33, 193–204 (2001b)CrossRef D. Rancourt, N. Hogan, Stability in force-production tasks. J. Mot. Behav. 33, 193–204 (2001b)CrossRef
90.
go back to reference D. Rancourt, N. Hogan, The biomechanics of force production, in Progress in Motor Control: A Multidisciplinary Perspective, ed by D. Sternad (Springer, Heidelberg, 2009) D. Rancourt, N. Hogan, The biomechanics of force production, in Progress in Motor Control: A Multidisciplinary Perspective, ed by D. Sternad (Springer, Heidelberg, 2009)
91.
go back to reference B. Rohrer, S. Fasoli, H.I. Krebs, B. Volpe, W.R. Frontera, J. Stein, N. Hogan, Submovements grow larger, fewer, and more blended during stroke recovery. Mot. Control 8, 472–483 (2004)CrossRef B. Rohrer, S. Fasoli, H.I. Krebs, B. Volpe, W.R. Frontera, J. Stein, N. Hogan, Submovements grow larger, fewer, and more blended during stroke recovery. Mot. Control 8, 472–483 (2004)CrossRef
92.
go back to reference B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol. Cybern. 89, 190–199 (2003)CrossRefMATH B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol. Cybern. 89, 190–199 (2003)CrossRefMATH
93.
go back to reference B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol. Cybern. 94, 409–414 (2006)CrossRefMATH B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol. Cybern. 94, 409–414 (2006)CrossRefMATH
94.
go back to reference R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)MathSciNetCrossRefMATH R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)MathSciNetCrossRefMATH
95.
go back to reference R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994) R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994)
96.
go back to reference R.N. Shepard, J. Metzler, Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)CrossRef R.N. Shepard, J. Metzler, Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)CrossRef
97.
go back to reference D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics, eds. by A. Fuchs, V. Jirsa (Springer, New York, 2008) D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics, eds. by A. Fuchs, V. Jirsa (Springer, New York, 2008)
98.
go back to reference D. Sternad, E.L. Amazeen, M.T. Turvey, Diffusive, synaptic, and synergetic coupling: an evaluation through inphase and antiphase rhythmic movements. J. Mot. Behav. 28, 255–269 (1996)CrossRef D. Sternad, E.L. Amazeen, M.T. Turvey, Diffusive, synaptic, and synergetic coupling: an evaluation through inphase and antiphase rhythmic movements. J. Mot. Behav. 28, 255–269 (1996)CrossRef
99.
go back to reference D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic coordination. Biol. Cybern. 73, 27–35 (1995)CrossRef D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic coordination. Biol. Cybern. 73, 27–35 (1995)CrossRef
100.
go back to reference D. Sternad, A. de Rugy, T. Pataky, W.J. Dean, Interactions of discrete and rhythmic movements over a wide range of periods. Exp. Brain Res. 147, 162–174 (2002)CrossRef D. Sternad, A. de Rugy, T. Pataky, W.J. Dean, Interactions of discrete and rhythmic movements over a wide range of periods. Exp. Brain Res. 147, 162–174 (2002)CrossRef
101.
go back to reference D. Sternad, W.J. Dean, Rhythmic and discrete elements in multi-joint coordination. Brain Res. 989, 152–171 (2003)CrossRef D. Sternad, W.J. Dean, Rhythmic and discrete elements in multi-joint coordination. Brain Res. 989, 152–171 (2003)CrossRef
102.
go back to reference D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19, 627–664 (2000)CrossRef D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19, 627–664 (2000)CrossRef
103.
go back to reference D. Sternad, H. Marino, S.K. Charles, M. Duarte, L. Dipietro, N. Hogan, Transitions between discrete and rhythmic primitives in a unimanual task. Front. Comput. Neurosci. 7 (2013) D. Sternad, H. Marino, S.K. Charles, M. Duarte, L. Dipietro, N. Hogan, Transitions between discrete and rhythmic primitives in a unimanual task. Front. Comput. Neurosci. 7 (2013)
104.
go back to reference D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)CrossRef D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)CrossRef
105.
go back to reference L.C. Thévenin, Sur un nouveau théorème d’électricité dynamique [On a new theorem of dynamic electricity]. Comptes Rendus des Séances de l’Académie des Sciences 97, 159–161 (1883)MATH L.C. Thévenin, Sur un nouveau théorème d’électricité dynamique [On a new theorem of dynamic electricity]. Comptes Rendus des Séances de l’Académie des Sciences 97, 159–161 (1883)MATH
106.
go back to reference W.J. Thompson, Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems (Wiley-Interscience, 1994) W.J. Thompson, Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems (Wiley-Interscience, 1994)
107.
go back to reference B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf, Variable impedance actuators: a review. Robot. Autonom. Syst. 61, 1601–1614 (2013)CrossRef B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf, Variable impedance actuators: a review. Robot. Autonom. Syst. 61, 1601–1614 (2013)CrossRef
108.
go back to reference J.M. Wakeling, A.-M. Liphardt, B.M. Nigg, Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech. 36, 1761–1769 (2003)CrossRef J.M. Wakeling, A.-M. Liphardt, B.M. Nigg, Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech. 36, 1761–1769 (2003)CrossRef
109.
go back to reference J.M. Wakeling, B.M. Nigg, Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol. 90, 412–420 (2001) J.M. Wakeling, B.M. Nigg, Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol. 90, 412–420 (2001)
110.
go back to reference Y. Wang, M. Srinivasan, Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol. Lett. 10 (2014) Y. Wang, M. Srinivasan, Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol. Lett. 10 (2014)
111.
go back to reference D.M. Wolpert, R.C. Miall, M. Kawato, Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998)CrossRef D.M. Wolpert, R.C. Miall, M. Kawato, Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998)CrossRef
112.
go back to reference G.I. Zahalak, Modeling muscle mechanics (and energetics), in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J.M. Winters, S.L.-Y. Woo (Springer, New York, 1990) G.I. Zahalak, Modeling muscle mechanics (and energetics), in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J.M. Winters, S.L.-Y. Woo (Springer, New York, 1990)
Metadata
Title
Physical Interaction via Dynamic Primitives
Author
Neville Hogan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51547-2_12