Skip to main content
Top
Published in: Quantum Information Processing 8/2020

01-08-2020

Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code

Authors: Chen Lin, GuoWu Yang, QingBin Luo, XiaoYu Li

Published in: Quantum Information Processing | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a non-transversal but pieceable fault tolerant conversion circuit that is used to convert encoded information between five-qubit code and seven-qubit CSS code. Since a syndrome extraction circuit requiring fewer ancillary qubit resources would facilitate the realization of large-scale quantum computations, we further adapt a flag-assisted fault tolerant syndrome measurement scheme to reduce the cost of ancillary preparation. Numerical simulations are also performed to further analyze the performance of our conversion method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)CrossRefADS Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)CrossRefADS
2.
go back to reference Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6(2), 97–165 (2006)MathSciNetMATH Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6(2), 97–165 (2006)MathSciNetMATH
3.
go back to reference Anderson, J.T., Duclos-Cianci, G., Poulin, D.: Fault-tolerant conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett. 113(8), 080501 (2014)CrossRefADS Anderson, J.T., Duclos-Cianci, G., Poulin, D.: Fault-tolerant conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett. 113(8), 080501 (2014)CrossRefADS
4.
go back to reference Baireuther, P., Caio, M., Criger, B., Beenakker, C.W., O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)CrossRefADS Baireuther, P., Caio, M., Criger, B., Beenakker, C.W., O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)CrossRefADS
5.
go back to reference Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549(7671), 172 (2017)CrossRefADS Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549(7671), 172 (2017)CrossRefADS
6.
go back to reference Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Thresholds for universal concatenated quantum codes. Phys. Rev. Lett. 117(1), 010501 (2016)MathSciNetCrossRefADS Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Thresholds for universal concatenated quantum codes. Phys. Rev. Lett. 117(1), 010501 (2016)MathSciNetCrossRefADS
7.
go back to reference Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)CrossRefADS Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)CrossRefADS
8.
go back to reference Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4(1), 42 (2018)CrossRefADS Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4(1), 42 (2018)CrossRefADS
9.
go back to reference Colladay, K.R., Mueller, E.J.: Rewiring stabilizer codes. New J. Phys. 20(8), 083030 (2018)CrossRefADS Colladay, K.R., Mueller, E.J.: Rewiring stabilizer codes. New J. Phys. 20(8), 083030 (2018)CrossRefADS
12.
go back to reference Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)CrossRefADS Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)CrossRefADS
13.
go back to reference Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum Information Science and Its Contributions to Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2010) Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum Information Science and Its Contributions to Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2010)
14.
go back to reference Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14(15–16), 1338–1372 (2014)MathSciNet Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14(15–16), 1338–1372 (2014)MathSciNet
15.
go back to reference Gottesman, D.E.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997) Gottesman, D.E.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)
16.
go back to reference Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5–6), 439–451 (2013)MathSciNet Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5–6), 439–451 (2013)MathSciNet
17.
go back to reference Hwang, Y., Choi, B.S., Ko, Y.c., Heo, J.: Fault-tolerant conversion between stabilizer codes by clifford operations (2015). arXiv:1511.02596 Hwang, Y., Choi, B.S., Ko, Y.c., Heo, J.: Fault-tolerant conversion between stabilizer codes by clifford operations (2015). arXiv:​1511.​02596
19.
go back to reference Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018) Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)
21.
go back to reference Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018) Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)
22.
go back to reference Raginsky, M.: Scaling and renormalization in fault-tolerant quantum computers. Quantum Inf. Process. 2(3), 249–258 (2003)MathSciNetCrossRef Raginsky, M.: Scaling and renormalization in fault-tolerant quantum computers. Quantum Inf. Process. 2(3), 249–258 (2003)MathSciNetCrossRef
23.
go back to reference Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEE (1996) Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEE (1996)
24.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefADS Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefADS
26.
go back to reference Tansuwannont, T.: Flag fault-tolerant error correction for cyclic css codes. Master’s thesis, University of Waterloo (2018) Tansuwannont, T.: Flag fault-tolerant error correction for cyclic css codes. Master’s thesis, University of Waterloo (2018)
27.
go back to reference Wecker, D., Svore, K.M.: Liqui\(\vert >\): A software design architecture and domain-specific language for quantum computing (2014). arXiv:1402.4467 Wecker, D., Svore, K.M.: Liqui\(\vert >\): A software design architecture and domain-specific language for quantum computing (2014). arXiv:​1402.​4467
28.
go back to reference Weinstein, Y.S.: Syndrome measurement order for the [[7, 1, 3]] quantum error correction code. Quantum Inf. Process. 15(3), 1263–1271 (2016)MathSciNetCrossRefADS Weinstein, Y.S.: Syndrome measurement order for the [[7, 1, 3]] quantum error correction code. Quantum Inf. Process. 15(3), 1263–1271 (2016)MathSciNetCrossRefADS
29.
go back to reference Yoder, T.J., Takagi, R., Chuang, I.L.: Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6(3), 031039 (2016) Yoder, T.J., Takagi, R., Chuang, I.L.: Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6(3), 031039 (2016)
Metadata
Title
Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code
Authors
Chen Lin
GuoWu Yang
QingBin Luo
XiaoYu Li
Publication date
01-08-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 8/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02740-3

Other articles of this Issue 8/2020

Quantum Information Processing 8/2020 Go to the issue