Skip to main content
Top
Published in: Journal of Materials Science 15/2018

03-05-2018 | Chemical routes to materials

PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders

Authors: C. A. Ramírez-Herrera, A. I. Flores-Vela, A. M. Torres-Huerta, M. A. Domínguez-Crespo, D. Palma-Ramírez

Published in: Journal of Materials Science | Issue 15/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work is focused on the structural, thermal and mechanical studies of direct polycondensation of poly (lactic acid) (PLA) modified with three different chain extenders (1,3-phenylene-bis-2-oxazoline, PBO; pyromellitic dianhydride, PMDA; and 1,1′-carbonyl bis caprolactam, CBC). Three concentrations of PBO, PMDA and CBC chain extenders (0.2, 0.5 and 1 wt%) were added during three stages (S): monomer dehydration (80 °C, S1), oligomer polycondensation (130 °C, S2) and melt polycondensation (160 °C, S3). FTIR, Raman and 1H-NMR spectroscopies revealed the presence of signals produced by interactions between OH and C=O end groups of PLA and reactive functional groups of chain extenders. It was found that the interaction with the PMDA chain extender decreased the PLA crystallinity. Furthermore, data from thermal analysis revealed that the interaction between PLA and chain extenders increased the chain mobility, which represented a decrease in its Tg. Enhanced mechanical properties, hardness, elastic modulus and indentation creep were observed with the addition of chain extenders, improving the performance with the addition of 1 wt% of PBO at S3, 1 wt% of PMDA at either S2 or S3 and 0.25 wt% of CBC at either S2 or S3. Additionally to the synthesis, the degradation was mainly influenced by the interaction more than by any specific stage of chain extender addition. Finally, the thermal and structural characterizations revealed that the PLA-PBO, PLA-PMDA and PLA-CBC systems were more resistant than PLA to UV light and humidity during the accelerated weathering test.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Samanta KK, Basak S, Chattopadhyay SK (2016) Potentials of fibrous and nonfibrous materials in biodegradable packaging. In: Muthu SS (ed) Environmental footprints of packaging. Springer Singapore, Singapore, pp 75–113CrossRef Samanta KK, Basak S, Chattopadhyay SK (2016) Potentials of fibrous and nonfibrous materials in biodegradable packaging. In: Muthu SS (ed) Environmental footprints of packaging. Springer Singapore, Singapore, pp 75–113CrossRef
2.
go back to reference Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S (2014) Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/polyamide 6 blend. Polym Degrad Stab 108(Supplement C):232–240CrossRef Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S (2014) Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: potential application in PLA/polyamide 6 blend. Polym Degrad Stab 108(Supplement C):232–240CrossRef
3.
go back to reference Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79(Supplement C):1346–1352CrossRef Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79(Supplement C):1346–1352CrossRef
4.
go back to reference Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46(22):6855–6871CrossRef Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46(22):6855–6871CrossRef
5.
go back to reference Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676CrossRef Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676CrossRef
6.
go back to reference Nair NR, Sekhar VC, Nampoothiri KM, Pandey A (2017) Biodegradation of biopolymers, current developments in biotechnology and bioengineering. Elsevier, New York, pp 739–755 Nair NR, Sekhar VC, Nampoothiri KM, Pandey A (2017) Biodegradation of biopolymers, current developments in biotechnology and bioengineering. Elsevier, New York, pp 739–755
7.
go back to reference Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef
8.
go back to reference Gu S, Yang M, Yu T, Ren T, Ren J (2008) Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym Int 57(8):982–986CrossRef Gu S, Yang M, Yu T, Ren T, Ren J (2008) Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym Int 57(8):982–986CrossRef
9.
go back to reference Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRef Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRef
10.
go back to reference Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2′-bis(2-oxazoline). Polymer 43(1):3–10CrossRef Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2′-bis(2-oxazoline). Polymer 43(1):3–10CrossRef
11.
go back to reference Kolahchi AR, Kontopoulou M (2015) Chain extended poly(3-hydroxybutyrate) with improved rheological properties and thermal stability, through reactive modification in the melt state. Polym Degrad Stab 121(Supplement C):222–229CrossRef Kolahchi AR, Kontopoulou M (2015) Chain extended poly(3-hydroxybutyrate) with improved rheological properties and thermal stability, through reactive modification in the melt state. Polym Degrad Stab 121(Supplement C):222–229CrossRef
12.
go back to reference Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) Melt synthesis and characterization of poly(l-lactic acid) chain linked by multifunctional epoxy compound. J Wuhan Univ Technol Mater Sci Ed 25(5):774–779CrossRef Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) Melt synthesis and characterization of poly(l-lactic acid) chain linked by multifunctional epoxy compound. J Wuhan Univ Technol Mater Sci Ed 25(5):774–779CrossRef
13.
go back to reference Gupta AP, Dev A, Kumar V (2012) Studies of novel chain linked biodegradable polymers. J Polym Environ 20(2):514–518CrossRef Gupta AP, Dev A, Kumar V (2012) Studies of novel chain linked biodegradable polymers. J Polym Environ 20(2):514–518CrossRef
15.
go back to reference Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36CrossRef Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36CrossRef
16.
go back to reference Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40CrossRef Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40CrossRef
17.
go back to reference Oliver WC, Pharr GM (2011) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRef Oliver WC, Pharr GM (2011) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRef
18.
go back to reference Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615CrossRef Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615CrossRef
19.
go back to reference Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57CrossRef Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57CrossRef
20.
go back to reference Fischer-Cripps AC (2004) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A 385(1):74–82CrossRef Fischer-Cripps AC (2004) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A 385(1):74–82CrossRef
21.
go back to reference Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRef Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRef
22.
go back to reference Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ 21(1):108–114CrossRef Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ 21(1):108–114CrossRef
23.
go back to reference Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(d, l-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10(5):5063–5073CrossRef Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(d, l-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10(5):5063–5073CrossRef
24.
go back to reference Martel-Estrada SA, Olivas-Armendáriz I, Martínez-Pérez CA, Chacón-Nava JG (2012) Bioactividad in vitro de materiales compuestos de quitosana/poli(dl-láctido). Revista mexicana de ingeniería química 11:505–512 Martel-Estrada SA, Olivas-Armendáriz I, Martínez-Pérez CA, Chacón-Nava JG (2012) Bioactividad in vitro de materiales compuestos de quitosana/poli(dl-láctido). Revista mexicana de ingeniería química 11:505–512
25.
go back to reference Larkin P (2011) Chapter 1—Introduction: infrared and Raman spectroscopy, infrared and Raman spectroscopy. Elsevier, Oxford, pp 1–5 Larkin P (2011) Chapter 1—Introduction: infrared and Raman spectroscopy, infrared and Raman spectroscopy. Elsevier, Oxford, pp 1–5
26.
go back to reference Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acids). Polymer 39(2):267–273CrossRef Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acids). Polymer 39(2):267–273CrossRef
27.
go back to reference Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends. Polymer 47(9):3132–3140CrossRef Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends. Polymer 47(9):3132–3140CrossRef
28.
go back to reference Dimonie D, Zaharia C, Petrea C, Fierascu I, Petrache M, Fierascu R, Socoteanu R, Pop S (2012) Overview on mechanical recycling by chain extension of POSTC-PET bottles, INTECH Open Access Publisher Dimonie D, Zaharia C, Petrea C, Fierascu I, Petrache M, Fierascu R, Socoteanu R, Pop S (2012) Overview on mechanical recycling by chain extension of POSTC-PET bottles, INTECH Open Access Publisher
29.
go back to reference Tuominen J, Seppälä JV (2000) Synthesis and characterization of lactic acid based poly(ester − amide). Macromolecules 33(10):3530–3535CrossRef Tuominen J, Seppälä JV (2000) Synthesis and characterization of lactic acid based poly(ester − amide). Macromolecules 33(10):3530–3535CrossRef
30.
go back to reference Awaja F, Daver F, Kosior E, Cser F (2004) The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled PET. J Therm Anal Calorim 78(3):865–884CrossRef Awaja F, Daver F, Kosior E, Cser F (2004) The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled PET. J Therm Anal Calorim 78(3):865–884CrossRef
31.
go back to reference Liu H, Wang X, Zhou H, Liu W, Liu B (2015) The preparation and characterization of branching poly(ethylene terephthalate) and its foaming behavior. Cell Polym 34(2):63–94 Liu H, Wang X, Zhou H, Liu W, Liu B (2015) The preparation and characterization of branching poly(ethylene terephthalate) and its foaming behavior. Cell Polym 34(2):63–94
32.
go back to reference Maier S, Loontjens T, Scholtens B, Mülhaupt R (2003) Carbonylbiscaprolactam: a versatile reagent for organic synthesis and isocyanate-free urethane chemistry. Angew Chem Int Ed 42(41):5094–5097CrossRef Maier S, Loontjens T, Scholtens B, Mülhaupt R (2003) Carbonylbiscaprolactam: a versatile reagent for organic synthesis and isocyanate-free urethane chemistry. Angew Chem Int Ed 42(41):5094–5097CrossRef
33.
go back to reference Buccella M, Dorigato A, Pasqualini E, Caldara M, Fambri L (2014) Chain extension behavior and thermo-mechanical properties of polyamide 6 chemically modified with 1,1′-carbonyl-bis-caprolactam. Polym Eng Sci 54(1):158–165CrossRef Buccella M, Dorigato A, Pasqualini E, Caldara M, Fambri L (2014) Chain extension behavior and thermo-mechanical properties of polyamide 6 chemically modified with 1,1′-carbonyl-bis-caprolactam. Polym Eng Sci 54(1):158–165CrossRef
34.
go back to reference Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube − polylactide nanocomposites. Macromolecules 44(16):6496–6502CrossRef Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube − polylactide nanocomposites. Macromolecules 44(16):6496–6502CrossRef
35.
go back to reference Brizzolara D, Cantow H-J, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactides). Macromolecules 29(1):191–197CrossRef Brizzolara D, Cantow H-J, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactides). Macromolecules 29(1):191–197CrossRef
36.
go back to reference De Santis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6(3):299–306CrossRef De Santis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6(3):299–306CrossRef
37.
go back to reference Maharana T, Mohanty B, Negi YS (2009) Melt–solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34(1):99–124CrossRef Maharana T, Mohanty B, Negi YS (2009) Melt–solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34(1):99–124CrossRef
38.
go back to reference Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310CrossRef Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310CrossRef
39.
go back to reference Hung C-Y, Wang C-C, Chen C-Y (2013) Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer 54(7):1860–1866CrossRef Hung C-Y, Wang C-C, Chen C-Y (2013) Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer 54(7):1860–1866CrossRef
40.
go back to reference Fambri L, Migliaresi C (2010) Crystallization and thermal properties, poly(lactic acid). Wiley, London, pp 113–124CrossRef Fambri L, Migliaresi C (2010) Crystallization and thermal properties, poly(lactic acid). Wiley, London, pp 113–124CrossRef
41.
go back to reference Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRef
43.
go back to reference Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRef Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRef
45.
go back to reference Zhou C, Li H, Zhang W, Li J, Huang S, Meng Y, Christiansen Jd, Yu D, Wu Z, Jiang S (2016) Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polymer 90(Supplement C):111–121CrossRef Zhou C, Li H, Zhang W, Li J, Huang S, Meng Y, Christiansen Jd, Yu D, Wu Z, Jiang S (2016) Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polymer 90(Supplement C):111–121CrossRef
47.
go back to reference Shen L, Phang IY, Chen L, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45(10):3341–3349CrossRef Shen L, Phang IY, Chen L, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45(10):3341–3349CrossRef
48.
go back to reference Mattioli S, Peltzer M, Fortunati E, Armentano I, Jiménez A, Kenny JM (2013) Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon 63(Supplement C):274–282CrossRef Mattioli S, Peltzer M, Fortunati E, Armentano I, Jiménez A, Kenny JM (2013) Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon 63(Supplement C):274–282CrossRef
50.
go back to reference Meng X, Shi G, Chen W, Wu C, Xin Z, Han T, Shi Y (2015) Structure effect of phosphite on the chain extension in PLA. Polym Degrad Stab 120(Supplement C):283–289CrossRef Meng X, Shi G, Chen W, Wu C, Xin Z, Han T, Shi Y (2015) Structure effect of phosphite on the chain extension in PLA. Polym Degrad Stab 120(Supplement C):283–289CrossRef
51.
go back to reference Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93(3):707–713CrossRef Solarski S, Ferreira M, Devaux E (2008) Ageing of polylactide and polylactide nanocomposite filaments. Polym Degrad Stab 93(3):707–713CrossRef
52.
go back to reference Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Effect of glycerol introduced into PLA based composites on the UV weathering behavior. Constr Build Mater 144(Supplement C):525–531CrossRef Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Effect of glycerol introduced into PLA based composites on the UV weathering behavior. Constr Build Mater 144(Supplement C):525–531CrossRef
53.
go back to reference Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79(3):385–397CrossRef Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79(3):385–397CrossRef
54.
55.
go back to reference Edlund U, Albertsson AC (2003) Polyesters based on diacid monomers. Adv Drug Deliv Rev 55(4):585–609CrossRef Edlund U, Albertsson AC (2003) Polyesters based on diacid monomers. Adv Drug Deliv Rev 55(4):585–609CrossRef
56.
go back to reference Witt U, Müller R-J, Deckwer W-D (1995) New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad 3(4):215–223CrossRef Witt U, Müller R-J, Deckwer W-D (1995) New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad 3(4):215–223CrossRef
57.
go back to reference Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844CrossRef Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844CrossRef
58.
go back to reference Tsuji H, Tezuka Y, Yamada K (2005) Alkaline and enzymatic degradation of l-lactide copolymers. II. Crystallized films of poly(l-lactide-co-d-lactide) and poly(l-lactide) with similar crystallinities. J Polym Sci Part B Polym Phys 43(9):1064–1075CrossRef Tsuji H, Tezuka Y, Yamada K (2005) Alkaline and enzymatic degradation of l-lactide copolymers. II. Crystallized films of poly(l-lactide-co-d-lactide) and poly(l-lactide) with similar crystallinities. J Polym Sci Part B Polym Phys 43(9):1064–1075CrossRef
59.
go back to reference Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(l-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77(7):1452–1464CrossRef Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(l-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77(7):1452–1464CrossRef
60.
go back to reference de Jong SJ, Arias ER, Rijkers DTS, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42(7):2795–2802CrossRef de Jong SJ, Arias ER, Rijkers DTS, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42(7):2795–2802CrossRef
Metadata
Title
PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders
Authors
C. A. Ramírez-Herrera
A. I. Flores-Vela
A. M. Torres-Huerta
M. A. Domínguez-Crespo
D. Palma-Ramírez
Publication date
03-05-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2380-7

Other articles of this Issue 15/2018

Journal of Materials Science 15/2018 Go to the issue

Premium Partners