Skip to main content
Top

2012 | OriginalPaper | Chapter

7. Poly(Butylene Succinate) and Poly[(Butylene Succinate)-co-Adipate] Nanocomposites

Authors : Vincent Ojijo, Suprakas Sinha Ray

Published in: Environmental Silicate Nano-Biocomposites

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the recent years, biodegradable aliphatic polyesters-based composite materials have attracted substantial interest, primarily due to their sustainable production, use and end-life. This chapter discusses the preparation, characterisation, and properties of nanoclay-containing composites of biodegradable poly(butylene succinate) (PBS) and poly[(butylene succinate)-co-adipate] (PBSA). Various nanocomposite structures arising from the incorporation of layered silicate particles, both pristine and organically modified, into the neat PBS and PBSA matrices is critically reviewed. Good dispersion of the layered silicates, especially the organically modified layered silicates, tends to result in an improvement in a number of properties of the final nanocomposites: storage modulus, tensile modulus, gas barrier properties, degradability, and thermal stability, when compared with the neat polymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Mater Sci 23:1273–1335 Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Mater Sci 23:1273–1335
2.
go back to reference Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef
3.
go back to reference Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Mater Sci 32:762–798 Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Mater Sci 32:762–798
4.
go back to reference Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Tech 19:634–643CrossRef Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Tech 19:634–643CrossRef
5.
go back to reference Kolybaba M, Tabil LG, Panigrahi S et al (2003) Biodegradable polymers: past, present, and future. In: The proceedings of American Society of Agricultural Engineers (ASAE) meeting, North Dakota, USA Kolybaba M, Tabil LG, Panigrahi S et al (2003) Biodegradable polymers: past, present, and future. In: The proceedings of American Society of Agricultural Engineers (ASAE) meeting, North Dakota, USA
6.
go back to reference Lenz RW (1995) Biodegradable polymers and plastics in Japan: research, development, and applications: International Technology Research Institute, US Department of Commerce. Report No.: PB95-199071 Lenz RW (1995) Biodegradable polymers and plastics in Japan: research, development, and applications: International Technology Research Institute, US Department of Commerce. Report No.: PB95-199071
7.
go back to reference Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24CrossRef Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24CrossRef
8.
go back to reference Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6:1017–1022CrossRef Vaia RA, Teukolsky RK, Giannelis EP (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 6:1017–1022CrossRef
9.
go back to reference Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRef Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRef
10.
go back to reference Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 12:675–680CrossRef Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 12:675–680CrossRef
11.
go back to reference Biswas M, Ray S (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. New Polymerization Techniques and Synthetic Methodologies. Springer, Berlin Biswas M, Ray S (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. New Polymerization Techniques and Synthetic Methodologies. Springer, Berlin
12.
go back to reference Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734CrossRef Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734CrossRef
13.
go back to reference LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRef
14.
go back to reference Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef
15.
go back to reference Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Mater Sci 28:1539–1641 Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Mater Sci 28:1539–1641
16.
go back to reference Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Mater Sci 34:125–155 Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Mater Sci 34:125–155
17.
go back to reference Yang K–K, Wang X-L, Wang Y-Z (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500 Yang K–K, Wang X-L, Wang Y-Z (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13:485–500
18.
go back to reference Rossi A, Dahman S, Fischer S et al (2000) Nanocomposites: the latest developments. Plas Add Comp 2:34–36 Rossi A, Dahman S, Fischer S et al (2000) Nanocomposites: the latest developments. Plas Add Comp 2:34–36
19.
go back to reference Lee S-R, Park H-M, Lim H et al (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43:2495–2500CrossRef Lee S-R, Park H-M, Lim H et al (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43:2495–2500CrossRef
20.
go back to reference Maiti P, Yamada K, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14:4654–4661CrossRef Maiti P, Yamada K, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14:4654–4661CrossRef
21.
go back to reference Ray SS, Yamada K, Ogami A et al (2002) New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties. Macromol Rapid Commun 23:943–947CrossRef Ray SS, Yamada K, Ogami A et al (2002) New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties. Macromol Rapid Commun 23:943–947CrossRef
22.
go back to reference Sinha Ray S, Maiti P, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites. 1. preparation, characterization, and properties. Macromolecules 35:3104–3110CrossRef Sinha Ray S, Maiti P, Okamoto M et al (2002) New polylactide/layered silicate nanocomposites. 1. preparation, characterization, and properties. Macromolecules 35:3104–3110CrossRef
23.
go back to reference Sinha Ray S, Okamoto K, Maiti P et al (2002) New poly(butylene succinate)/layered silicate nanocomposites. 1: preparation and mechanical properties. J Nanosci Nanotechno 2:171–176CrossRef Sinha Ray S, Okamoto K, Maiti P et al (2002) New poly(butylene succinate)/layered silicate nanocomposites. 1: preparation and mechanical properties. J Nanosci Nanotechno 2:171–176CrossRef
24.
go back to reference Okamoto K, Sinha Ray S, Okamoto M (2003) New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. J Polym Sci B: Polym Phys 41:3160–3172CrossRef Okamoto K, Sinha Ray S, Okamoto M (2003) New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. J Polym Sci B: Polym Phys 41:3160–3172CrossRef
25.
go back to reference Zhu C, Zhang Z, Liu Q et al (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90:982–990CrossRef Zhu C, Zhang Z, Liu Q et al (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90:982–990CrossRef
26.
go back to reference Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stabil 59:209–214CrossRef Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stabil 59:209–214CrossRef
27.
go back to reference Ajioka M, Suizu H, Higuchi C et al (1998) Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization. Polym Degrad Stabil 59:137–143CrossRef Ajioka M, Suizu H, Higuchi C et al (1998) Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization. Polym Degrad Stabil 59:137–143CrossRef
28.
go back to reference Wang G, Gao B, Ye H et al (2010) Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1,2-octanediol segments. J Appl Polym Sci 117:2538–2544 Wang G, Gao B, Ye H et al (2010) Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1,2-octanediol segments. J Appl Polym Sci 117:2538–2544
29.
go back to reference Zhao J-H, Wang X-Q, Zeng J et al (2005) Biodegradation of poly(butylene succinate) in compost. J Appl Polym Sci 97:2273–2278CrossRef Zhao J-H, Wang X-Q, Zeng J et al (2005) Biodegradation of poly(butylene succinate) in compost. J Appl Polym Sci 97:2273–2278CrossRef
30.
go back to reference Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta 435:142–150CrossRef Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta 435:142–150CrossRef
31.
go back to reference Ishii M, Okazaki M, Shibasaki Y et al (2001) Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation. Biomacromolecules 2:1267–1270CrossRef Ishii M, Okazaki M, Shibasaki Y et al (2001) Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation. Biomacromolecules 2:1267–1270CrossRef
32.
go back to reference Han Y-K, Kim S-R, Kim J (2002) Preparation and characterization of high molecular weight poly(butylene succinate). Macromol Res 10:108–114CrossRef Han Y-K, Kim S-R, Kim J (2002) Preparation and characterization of high molecular weight poly(butylene succinate). Macromol Res 10:108–114CrossRef
33.
go back to reference Kawasaki TY, Kamakura ET, inventors; Shower Highpolymer Co., Ltd., assignee (1995) polyester injection-molded articles. USA Kawasaki TY, Kamakura ET, inventors; Shower Highpolymer Co., Ltd., assignee (1995) polyester injection-molded articles. USA
34.
go back to reference Okamoto M (2006) Biodegradable polymer/layered silicate nanocomposites. In: Mallapragada S, Narasimhan B (eds) Handbook of biodegrdable polymeric materials and their applications. American Scientific Publishers, California Okamoto M (2006) Biodegradable polymer/layered silicate nanocomposites. In: Mallapragada S, Narasimhan B (eds) Handbook of biodegrdable polymeric materials and their applications. American Scientific Publishers, California
35.
go back to reference Sinha Ray S, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367CrossRef Sinha Ray S, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367CrossRef
36.
go back to reference Montaudo G, Rizzarelli P (2000) Synthesis and enzymatic degradation of aliphatic copolyesters. Polym Degrad Stab 70:305–314CrossRef Montaudo G, Rizzarelli P (2000) Synthesis and enzymatic degradation of aliphatic copolyesters. Polym Degrad Stab 70:305–314CrossRef
37.
go back to reference Cao A, Okamura T, Nakayama K et al (2002) Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stabil 78:107–117CrossRef Cao A, Okamura T, Nakayama K et al (2002) Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stabil 78:107–117CrossRef
38.
go back to reference Papageorgiou GZ, Bikiaris DN (2007) Synthesis, co-crystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 8:2437–2449CrossRef Papageorgiou GZ, Bikiaris DN (2007) Synthesis, co-crystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 8:2437–2449CrossRef
39.
go back to reference Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stabil 74:263–270CrossRef Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stabil 74:263–270CrossRef
40.
go back to reference Ahn BD, Kim SH, Kim YH et al (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826CrossRef Ahn BD, Kim SH, Kim YH et al (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826CrossRef
41.
go back to reference Rizzarelli P, Puglisi C, Montaudo G (2004) Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stabil 85:855–863CrossRef Rizzarelli P, Puglisi C, Montaudo G (2004) Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stabil 85:855–863CrossRef
42.
go back to reference Wang Y, Bhattacharya M, Mano JF (2005) Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). J Polym Sci Pol Phys 43:3077–3082CrossRef Wang Y, Bhattacharya M, Mano JF (2005) Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). J Polym Sci Pol Phys 43:3077–3082CrossRef
43.
go back to reference Sato Y, Takikawa T, Sorakubo A et al (2000) Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind Eng Chem Res 39:4813–4819CrossRef Sato Y, Takikawa T, Sorakubo A et al (2000) Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind Eng Chem Res 39:4813–4819CrossRef
44.
go back to reference Eslami H, Grmela M, Dubois C et al (2009) Melt rheology of biodegradable poly[(butylene succinate)-co-adipate]: experimental and model predictions. J Polym Sci Pol Phys 48:832–839CrossRef Eslami H, Grmela M, Dubois C et al (2009) Melt rheology of biodegradable poly[(butylene succinate)-co-adipate]: experimental and model predictions. J Polym Sci Pol Phys 48:832–839CrossRef
45.
go back to reference Ren M, Song J, Song C et al (2005) Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci Pol Phys 43:3231–3241CrossRef Ren M, Song J, Song C et al (2005) Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci Pol Phys 43:3231–3241CrossRef
46.
go back to reference Zhao J-H, Wang X-Q, Zeng J et al (2005) Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor. Polym Degrad Stabil 90:173–179CrossRef Zhao J-H, Wang X-Q, Zeng J et al (2005) Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor. Polym Degrad Stabil 90:173–179CrossRef
47.
go back to reference Tserki V, Matzinos P, Pavlidou E et al (2006) Biodegradable aliphatic polyesters. Part II. Synthesis and characterization of chain extended poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil 91:377–384CrossRef Tserki V, Matzinos P, Pavlidou E et al (2006) Biodegradable aliphatic polyesters. Part II. Synthesis and characterization of chain extended poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil 91:377–384CrossRef
48.
go back to reference Hayase N, Yano H, Kudoh E et al (2004) Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism. J Biosci Bioeng 97:131–133 Hayase N, Yano H, Kudoh E et al (2004) Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism. J Biosci Bioeng 97:131–133
49.
go back to reference Tomita K, Kuroki Y, Hayashi N et al (2000) Isolation of a thermophile degrading poly(butylene succinate-co-butylene adipate). J Biosci Bioeng 90:350–352 Tomita K, Kuroki Y, Hayashi N et al (2000) Isolation of a thermophile degrading poly(butylene succinate-co-butylene adipate). J Biosci Bioeng 90:350–352
50.
go back to reference Fruzsina K, Százdi L, Fekete E et al (2006) Surface characteristics of layered silicates: influence on the properties of clay/polymer nanocomposites. Langmuir 22:7848–7854CrossRef Fruzsina K, Százdi L, Fekete E et al (2006) Surface characteristics of layered silicates: influence on the properties of clay/polymer nanocomposites. Langmuir 22:7848–7854CrossRef
51.
go back to reference Gilman JW, Morgan AB, Jr. RH et al (eds) (1999) Polymer layered-silicate nanocomposites: polyamide-6 polypropylene and polystyrene. New advances in flame retardant technology. Tucson, AZ. Fire Retardant Chemicals Association Gilman JW, Morgan AB, Jr. RH et al (eds) (1999) Polymer layered-silicate nanocomposites: polyamide-6 polypropylene and polystyrene. New advances in flame retardant technology. Tucson, AZ. Fire Retardant Chemicals Association
52.
go back to reference Chen G, Yoon J-S (2005) Nanocomposites of poly[(butylene succinate)-co-(butylene adipate)] (PBSA) and twice-functionalized organoclay. P. Polym Int 54:939–945CrossRef Chen G, Yoon J-S (2005) Nanocomposites of poly[(butylene succinate)-co-(butylene adipate)] (PBSA) and twice-functionalized organoclay. P. Polym Int 54:939–945CrossRef
53.
go back to reference Hwang SY, Ham MJ, Im SS (2010) Influence of clay surface modification with urethane groups on the crystallization behavior of in situ polymerized poly(butylene succinate) nanocomposites. Polym Degrad Stab 95:1313–1320CrossRef Hwang SY, Ham MJ, Im SS (2010) Influence of clay surface modification with urethane groups on the crystallization behavior of in situ polymerized poly(butylene succinate) nanocomposites. Polym Degrad Stab 95:1313–1320CrossRef
54.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28:1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28:1–63CrossRef
55.
go back to reference Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
56.
go back to reference Lim ST, Hyun YH, Choi HJ et al (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844CrossRef Lim ST, Hyun YH, Choi HJ et al (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844CrossRef
57.
go back to reference Messersmith PB, Giannelis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative polymerization of e-caprolactone in layered silicates. Chem Mater 5:1064–1066CrossRef Messersmith PB, Giannelis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative polymerization of e-caprolactone in layered silicates. Chem Mater 5:1064–1066CrossRef
58.
go back to reference Hwang SY, Yoo ES, Im SS (2009) Effect of the urethane group on treated clay surfaces for high-performance poly(butylene succinate)/montmorillonite nanocomposites. Polym Degrad Stab 94:2163–2169CrossRef Hwang SY, Yoo ES, Im SS (2009) Effect of the urethane group on treated clay surfaces for high-performance poly(butylene succinate)/montmorillonite nanocomposites. Polym Degrad Stab 94:2163–2169CrossRef
59.
go back to reference Vaia RA, Jandt KD, Kramer EJ et al (1996) Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater 8:2628–2635CrossRef Vaia RA, Jandt KD, Kramer EJ et al (1996) Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater 8:2628–2635CrossRef
60.
go back to reference Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30:7990–7999CrossRef Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30:7990–7999CrossRef
61.
go back to reference Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000–8009CrossRef Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000–8009CrossRef
62.
go back to reference Pollet E, Delcourt C, Alexandre M et al (2006) Transesterification catalysts to improve clay exfoliation in synthetic biodegradable polyester nanocomposites. Eur Polym J 42:1330–1341CrossRef Pollet E, Delcourt C, Alexandre M et al (2006) Transesterification catalysts to improve clay exfoliation in synthetic biodegradable polyester nanocomposites. Eur Polym J 42:1330–1341CrossRef
63.
go back to reference Sinha Ray S, Bousmina M (2005) Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer 46:12430–12439CrossRef Sinha Ray S, Bousmina M (2005) Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer 46:12430–12439CrossRef
64.
go back to reference Sinha Ray S (2009) Visualisation of nanoclay dispersion in polymer matrix by high-resolution electron microscopy combined with electron tomography. Macromol Mater Eng 294:281–286CrossRef Sinha Ray S (2009) Visualisation of nanoclay dispersion in polymer matrix by high-resolution electron microscopy combined with electron tomography. Macromol Mater Eng 294:281–286CrossRef
65.
go back to reference Malwela T, Sinha Ray S (2011) Unique morphology of dispersed clay particles in a polymer nanocomposite. Polymer 52:1297–1301CrossRef Malwela T, Sinha Ray S (2011) Unique morphology of dispersed clay particles in a polymer nanocomposite. Polymer 52:1297–1301CrossRef
66.
go back to reference Bandyopadhyay J, Sinha Ray S (2010) The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer 51:1437–1449CrossRef Bandyopadhyay J, Sinha Ray S (2010) The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer 51:1437–1449CrossRef
67.
go back to reference Sinha Ray S, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly(butylene succinate-co-adipate) and organically modified montmorillonite. Macromol Mater Eng 290:759–768CrossRef Sinha Ray S, Bousmina M, Okamoto K (2005) Structure and properties of nanocomposites based on poly(butylene succinate-co-adipate) and organically modified montmorillonite. Macromol Mater Eng 290:759–768CrossRef
68.
go back to reference Bandyopadhyay J, Sinha Ray S (2010) Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer 51:4860–4866CrossRef Bandyopadhyay J, Sinha Ray S (2010) Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer 51:4860–4866CrossRef
69.
go back to reference Bandyopadhyay J, Maity A, Khatua BB et al (2010) Thermal and rheological properties of biodegradable poly[(butylene succinate)-co-adipate] Nanocomposites. J Nanosci Nanotechno 10:4184–4195CrossRef Bandyopadhyay J, Maity A, Khatua BB et al (2010) Thermal and rheological properties of biodegradable poly[(butylene succinate)-co-adipate] Nanocomposites. J Nanosci Nanotechno 10:4184–4195CrossRef
70.
go back to reference Sinha Ray S, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stabil 92:802–812CrossRef Sinha Ray S, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stabil 92:802–812CrossRef
71.
go back to reference Sinha Ray S, Bousmina M (2006) Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite. Macromol Chem Phys 207:1207–1219CrossRef Sinha Ray S, Bousmina M (2006) Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite. Macromol Chem Phys 207:1207–1219CrossRef
72.
go back to reference Eslami H, Grmela M, Bousmina M (2009) Structure build-up at rest in polymer nanocomposites: flow reversal experiments. J Polym Sci Pol Phys 47:1728–1741CrossRef Eslami H, Grmela M, Bousmina M (2009) Structure build-up at rest in polymer nanocomposites: flow reversal experiments. J Polym Sci Pol Phys 47:1728–1741CrossRef
73.
go back to reference Chen G-X, Kim E-S, Yoon J-S (2005) Poly(butylene succinate)/twice functionalized organoclay nanocomposites: preparation, characterization, and properties. J Appl Polym Sci 98:1727–1732CrossRef Chen G-X, Kim E-S, Yoon J-S (2005) Poly(butylene succinate)/twice functionalized organoclay nanocomposites: preparation, characterization, and properties. J Appl Polym Sci 98:1727–1732CrossRef
74.
go back to reference Dean KM, Pas SJ, Yu L et al (2009) Formation of highly oriented biodegradable polybutylene succinate adipate nanocomposites: effects of cation structures on morphology, free volume, and properties. J Appl Polym Sci 113:3716–3724CrossRef Dean KM, Pas SJ, Yu L et al (2009) Formation of highly oriented biodegradable polybutylene succinate adipate nanocomposites: effects of cation structures on morphology, free volume, and properties. J Appl Polym Sci 113:3716–3724CrossRef
75.
go back to reference Sinha Ray S (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51:3966–3970CrossRef Sinha Ray S (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51:3966–3970CrossRef
76.
go back to reference Shih Y-F, Wu T-M (2009) Enzymatic degradation kinetics of poly(butylene succinate) nanocomposites. J Polym Res 16:109–115CrossRef Shih Y-F, Wu T-M (2009) Enzymatic degradation kinetics of poly(butylene succinate) nanocomposites. J Polym Res 16:109–115CrossRef
77.
go back to reference Ray SS (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51:3966–3970CrossRef Ray SS (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51:3966–3970CrossRef
78.
go back to reference Shih Y, Wang T, Jeng R et al (2007) Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ 15:151–158CrossRef Shih Y, Wang T, Jeng R et al (2007) Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ 15:151–158CrossRef
79.
go back to reference Shia D, Hui CY, Burnside SD et al (1998) An interface model for the prediction of Young’s modulus of layered silicate-elastomer nanocomposites. Polym Compos 19:608–617CrossRef Shia D, Hui CY, Burnside SD et al (1998) An interface model for the prediction of Young’s modulus of layered silicate-elastomer nanocomposites. Polym Compos 19:608–617CrossRef
80.
go back to reference Someya Y, Nakazato T, Teramoto N et al (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475CrossRef Someya Y, Nakazato T, Teramoto N et al (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475CrossRef
81.
go back to reference Sinha Ray S, Okamoto K, Okamoto M (2006) Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. J Appl Polym Sci 102:777–785CrossRef Sinha Ray S, Okamoto K, Okamoto M (2006) Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. J Appl Polym Sci 102:777–785CrossRef
82.
go back to reference Makhatha ME, Ray SS, Hato J et al (2008) Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites. J Nanosci Nanotechno 8:1679–1689CrossRef Makhatha ME, Ray SS, Hato J et al (2008) Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites. J Nanosci Nanotechno 8:1679–1689CrossRef
83.
go back to reference Shih YF, Wang TY, Jeng RJ et al (2008) Cross-linked and uncross-linked biodegradable nanocomposites. I. Nonisothermal crystallization kinetics and gas permeability. J Appl Polym Sci 110:1068–1079CrossRef Shih YF, Wang TY, Jeng RJ et al (2008) Cross-linked and uncross-linked biodegradable nanocomposites. I. Nonisothermal crystallization kinetics and gas permeability. J Appl Polym Sci 110:1068–1079CrossRef
84.
go back to reference Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Pure 1:929–942CrossRef Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Pure 1:929–942CrossRef
85.
go back to reference Ray SS, Okamoto K, Okamoto M (2006) Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. J Appl Polym Sci 102:777–785CrossRef Ray SS, Okamoto K, Okamoto M (2006) Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. J Appl Polym Sci 102:777–785CrossRef
86.
go back to reference Sinha Ray S, Yamada K, Okamoto M et al (2003) New polylactide/layered silicate nanocomposites. 5. designing of materials with desired properties. Polymer 44:6633–6646CrossRef Sinha Ray S, Yamada K, Okamoto M et al (2003) New polylactide/layered silicate nanocomposites. 5. designing of materials with desired properties. Polymer 44:6633–6646CrossRef
87.
go back to reference Sinha Ray S, Bandyopadhyay J, Bousmina M (2008) Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene succinate)-co-adipate] nanocomposites. Eur Polym J 44:3133–3145CrossRef Sinha Ray S, Bandyopadhyay J, Bousmina M (2008) Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene succinate)-co-adipate] nanocomposites. Eur Polym J 44:3133–3145CrossRef
88.
go back to reference Chen G-X, Yoon J-S (2005) Nonisothermal crystallization kinetics of poly(butylene succinate) composites with a twice functionalized organoclay. J Polym Sci Pol Phys 43:817–826CrossRef Chen G-X, Yoon J-S (2005) Nonisothermal crystallization kinetics of poly(butylene succinate) composites with a twice functionalized organoclay. J Polym Sci Pol Phys 43:817–826CrossRef
89.
go back to reference Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7:1103CrossRef Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7:1103CrossRef
90.
go back to reference Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212CrossRef Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212CrossRef
91.
go back to reference Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177CrossRef Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177CrossRef
92.
go back to reference Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158CrossRef Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158CrossRef
93.
go back to reference Liu T, Mo Z, Wang S et al (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575CrossRef Liu T, Mo Z, Wang S et al (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575CrossRef
94.
go back to reference Kuwabara K, Gan Z, Nakamura T et al (2002) Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules 3:1095–1100CrossRef Kuwabara K, Gan Z, Nakamura T et al (2002) Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules 3:1095–1100CrossRef
95.
go back to reference Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Int Sci 6:464–470CrossRef Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Int Sci 6:464–470CrossRef
96.
go back to reference Sinha RS (2006) Rheology of polymer/layered silicate nanocomposites. J Ind Eng Chem 12:811–842 Sinha RS (2006) Rheology of polymer/layered silicate nanocomposites. J Ind Eng Chem 12:811–842
97.
go back to reference Lim ST, Lee CH, Choi HJ et al (2003) Solidlike transition of melt-intercalated biodegradable polymer/clay nanocomposites. J Polym Sci Pol Phys 41:2052–2061CrossRef Lim ST, Lee CH, Choi HJ et al (2003) Solidlike transition of melt-intercalated biodegradable polymer/clay nanocomposites. J Polym Sci Pol Phys 41:2052–2061CrossRef
98.
go back to reference Lee CH, Lim ST, Hyun YH et al (2003) Fabrication and viscoelastic properties of biodegradable polymer/organophilic clay nanocomposites. J Mater Sci Lett 22:53–55CrossRef Lee CH, Lim ST, Hyun YH et al (2003) Fabrication and viscoelastic properties of biodegradable polymer/organophilic clay nanocomposites. J Mater Sci Lett 22:53–55CrossRef
99.
go back to reference Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef
100.
go back to reference Carreau PJ, Kee DCRD, Chhabra RP (1997) Rheology of polymeric systems—principles and applications. Hanser Publishers, New York Carreau PJ, Kee DCRD, Chhabra RP (1997) Rheology of polymeric systems—principles and applications. Hanser Publishers, New York
101.
go back to reference Ray SS, Bousmina M (2006) Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite. Macromol Chem Phys 207:1207–1219CrossRef Ray SS, Bousmina M (2006) Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite. Macromol Chem Phys 207:1207–1219CrossRef
102.
go back to reference Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stabil 92:802–812CrossRef Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stabil 92:802–812CrossRef
Metadata
Title
Poly(Butylene Succinate) and Poly[(Butylene Succinate)-co-Adipate] Nanocomposites
Authors
Vincent Ojijo
Suprakas Sinha Ray
Copyright Year
2012
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4108-2_7

Premium Partners