Skip to main content
Top

2013 | OriginalPaper | Chapter

11. Polylactic Acid Based Blends, Composites and Nanocomposites

Authors : Azman Hassan, Harintharavimal Balakrishnan, Abozar Akbari

Published in: Advances in Natural Polymers

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biopolymers are expected to be an alternative for conventional plastics due to the limited resources and soaring petroleum price which will restrict the use of petroleum based plastics in the near future. PLA has attracted the attention of polymer scientist recently as a potential biopolymer to substitute the conventional petroleum based plastics. The chapter aims to highlight on the recent developments in preparation and characterization of PLA blends (biodegradable and non-biodegradable blends), PLA composites (natural fiber and mineral fillers) and PLA nanocomposites (PLA/montmorillonite, PLA/carbon nanotubes and PLA/cellulose nanowhiskers).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jacobsen, S., Dege´e, P., Fritz, H.G., Dubois, P., Jerome, R.: Polylactide (PLA)-a new way of production. Polym. Eng. Sci. 39(7), 1311–1319 (1999)CrossRef Jacobsen, S., Dege´e, P., Fritz, H.G., Dubois, P., Jerome, R.: Polylactide (PLA)-a new way of production. Polym. Eng. Sci. 39(7), 1311–1319 (1999)CrossRef
2.
go back to reference Jacobsen, S., Fritz, H.G.: Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 39(7), 1303–1310 (1999)CrossRef Jacobsen, S., Fritz, H.G.: Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 39(7), 1303–1310 (1999)CrossRef
3.
go back to reference Lim, J.W., Hassan, A., Rahmat, A.R., Wahit, M.U.: Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly (ethylene-co-octene). Polym. Int. 55, 204–215 (2006)CrossRef Lim, J.W., Hassan, A., Rahmat, A.R., Wahit, M.U.: Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly (ethylene-co-octene). Polym. Int. 55, 204–215 (2006)CrossRef
4.
go back to reference Hasegawa, N., Okamoto, H., Kawasumi, M., Usuki, A.: Preparation and mechanical properties of polystyrene–clay hybrids. J. Appl. Polym. Sci. 74, 3359–3364 (1999)CrossRef Hasegawa, N., Okamoto, H., Kawasumi, M., Usuki, A.: Preparation and mechanical properties of polystyrene–clay hybrids. J. Appl. Polym. Sci. 74, 3359–3364 (1999)CrossRef
5.
go back to reference Gupta, K., Rana, S.K., Deopura, B.: Mechanical properties and morphology of high-density polyethylene/linear low-density polyethylene blend. J. Appl. Polym. Sci. 46, 99–108 (1992)CrossRef Gupta, K., Rana, S.K., Deopura, B.: Mechanical properties and morphology of high-density polyethylene/linear low-density polyethylene blend. J. Appl. Polym. Sci. 46, 99–108 (1992)CrossRef
6.
go back to reference Wahit, M.U.: Rubber toughened polyamide 6/polypropylene nanocomposites: Mechanical, thermal and morphological properties. Ph.D. thesis. Universiti Teknologi Malaysia, Skudai (2006) Wahit, M.U.: Rubber toughened polyamide 6/polypropylene nanocomposites: Mechanical, thermal and morphological properties. Ph.D. thesis. Universiti Teknologi Malaysia, Skudai (2006)
7.
go back to reference Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., Wintermantel, E.: Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1731–1738 (2003)CrossRef Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., Wintermantel, E.: Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1731–1738 (2003)CrossRef
8.
go back to reference Kulinski, Z., Piorkowska, E.: Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46, 10290–10300 (2005)CrossRef Kulinski, Z., Piorkowska, E.: Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46, 10290–10300 (2005)CrossRef
9.
go back to reference Takayama, T., Todo, M.: Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J. Mater. Sci. 41, 4989–4992 (2006)CrossRef Takayama, T., Todo, M.: Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J. Mater. Sci. 41, 4989–4992 (2006)CrossRef
10.
go back to reference Takayama, T., Todo, M., Tsuji, H.: Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J. Mech. Behav. Biomed. Mater. 4, 255–260 (2011)CrossRef Takayama, T., Todo, M., Tsuji, H.: Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J. Mech. Behav. Biomed. Mater. 4, 255–260 (2011)CrossRef
11.
go back to reference Semba, T., Kitagawa, K., Ishiaku, U.S., Hamada, H.: The Effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 101(3), 1816–1825 (2006)CrossRef Semba, T., Kitagawa, K., Ishiaku, U.S., Hamada, H.: The Effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 101(3), 1816–1825 (2006)CrossRef
12.
go back to reference Chen, B.K., Shen, C.H., Chen, S.C., Chen, A.F.: Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 51, 4667–4672 (2010)CrossRef Chen, B.K., Shen, C.H., Chen, S.C., Chen, A.F.: Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 51, 4667–4672 (2010)CrossRef
13.
go back to reference Jiang, L., Wolcott, M.P., Zhang, J.: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199–207 (2006)CrossRef Jiang, L., Wolcott, M.P., Zhang, J.: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199–207 (2006)CrossRef
14.
go back to reference Li, Y., Shimizu, H.: Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 7, 921–928 (2007)CrossRef Li, Y., Shimizu, H.: Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 7, 921–928 (2007)CrossRef
15.
go back to reference Liu, T.Y., Lin, W.C., Yang, M.C., Chen, S.Y.: Miscibility, thermal characterization and crystallization of poly(l-lactide) and poly(tetramethylene adipate-co-terephthalate) blend membranes. Polymer 46(26), 12586–12594 (2005)CrossRef Liu, T.Y., Lin, W.C., Yang, M.C., Chen, S.Y.: Miscibility, thermal characterization and crystallization of poly(l-lactide) and poly(tetramethylene adipate-co-terephthalate) blend membranes. Polymer 46(26), 12586–12594 (2005)CrossRef
16.
go back to reference Anderson, K.S., Lim, S.H., Hillmyer, M.A.: Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 89, 3757–3768 (2003)CrossRef Anderson, K.S., Lim, S.H., Hillmyer, M.A.: Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 89, 3757–3768 (2003)CrossRef
17.
go back to reference Ishada, S., Nagasaki, R., Chino, K., Dong, T., Inoue, Y.: Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)CrossRef Ishada, S., Nagasaki, R., Chino, K., Dong, T., Inoue, Y.: Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)CrossRef
18.
go back to reference Balakrishnan, H., Hassan, A., Wahit, M.U.: Mechanical, thermal and morphological properties of polylactic acid/linear low density polyethylene blends. J. Elastomers Plast. 42(3), 223–229 (2010)CrossRef Balakrishnan, H., Hassan, A., Wahit, M.U.: Mechanical, thermal and morphological properties of polylactic acid/linear low density polyethylene blends. J. Elastomers Plast. 42(3), 223–229 (2010)CrossRef
21.
go back to reference Lanzillotta, C., Pipino, A., Lips, D.: New functional biopolymer natural fiber composites from agriculture resources. In: Proceeding of annual technical conference of the society of plastics engineers, vol. 60, pp. 2185 (2002) Lanzillotta, C., Pipino, A., Lips, D.: New functional biopolymer natural fiber composites from agriculture resources. In: Proceeding of annual technical conference of the society of plastics engineers, vol. 60, pp. 2185 (2002)
22.
go back to reference Tokoro, R., Vu, D.M., Okubo, K., Tanaka, T., Fujii, T., Fujiura, T.: Mechanical properties of polylactic acid/bamboo fibers. J. Mater. Sci. 43, 775–787 (2008)CrossRef Tokoro, R., Vu, D.M., Okubo, K., Tanaka, T., Fujii, T., Fujiura, T.: Mechanical properties of polylactic acid/bamboo fibers. J. Mater. Sci. 43, 775–787 (2008)CrossRef
23.
go back to reference Graupner, N., Herrmann, A.S., Mussig, J.: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos. A 40, 810–821 (2009) Graupner, N., Herrmann, A.S., Mussig, J.: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos. A 40, 810–821 (2009)
24.
go back to reference Wu, C.S.: Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 94, 1076–1084 (2009)CrossRef Wu, C.S.: Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 94, 1076–1084 (2009)CrossRef
25.
go back to reference Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lu, S., Zhang, G.: Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem. Eng. J. 166(2), 772–778 (2011)CrossRef Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lu, S., Zhang, G.: Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem. Eng. J. 166(2), 772–778 (2011)CrossRef
26.
go back to reference Sawpan, M.A., Pickering, K.L., Fernyhough, A.: Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. A 42, 310–319 (2011) Sawpan, M.A., Pickering, K.L., Fernyhough, A.: Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. A 42, 310–319 (2011)
27.
go back to reference Yussuf, A.A., Massoumi, I., Hassan, A.: Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ. 18(3), 422–429 (2010)CrossRef Yussuf, A.A., Massoumi, I., Hassan, A.: Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ. 18(3), 422–429 (2010)CrossRef
28.
go back to reference Wu, C.S.: Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid–characterization and biodegradability assessment. Macromol. Biosci. 5, 352–361 (2005)CrossRef Wu, C.S.: Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid–characterization and biodegradability assessment. Macromol. Biosci. 5, 352–361 (2005)CrossRef
29.
go back to reference Shi, Q., Chen, C., Gao, L., Jiao, L., Xu, H., Guo, W.: Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym. Degrad. Stab. 96, 175–182 (2011)CrossRef Shi, Q., Chen, C., Gao, L., Jiao, L., Xu, H., Guo, W.: Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym. Degrad. Stab. 96, 175–182 (2011)CrossRef
30.
go back to reference Rothon, R.N.: Particulate-Filled Polymer Composites. Longman Scientific & Technical, U.K. (1995) Rothon, R.N.: Particulate-Filled Polymer Composites. Longman Scientific & Technical, U.K. (1995)
31.
go back to reference Velasco, J.I., Desaja, J.A., Martinez, A.B.: Crystallization behavior of polypropylene filled with surface-modified talc. J. Appl. Polym. Sci. 61, 125–132 (1996)CrossRef Velasco, J.I., Desaja, J.A., Martinez, A.B.: Crystallization behavior of polypropylene filled with surface-modified talc. J. Appl. Polym. Sci. 61, 125–132 (1996)CrossRef
32.
go back to reference Audrey, W., Rahul, B., Amar, K.M.: Novel talc-filled biodegradable bacterial polyester composites. Ind. Eng. Chem. Res. 45, 7497–7503 (2006)CrossRef Audrey, W., Rahul, B., Amar, K.M.: Novel talc-filled biodegradable bacterial polyester composites. Ind. Eng. Chem. Res. 45, 7497–7503 (2006)CrossRef
33.
go back to reference Fowlks, A.C., Narayan, R.: The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-talc composites. J. Appl. Polym. Sci. 118, 2810–2820 (2010)CrossRef Fowlks, A.C., Narayan, R.: The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-talc composites. J. Appl. Polym. Sci. 118, 2810–2820 (2010)CrossRef
34.
go back to reference Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M.: The effect of silane treated- and untreated- talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. B 38, 367–379 (2007)CrossRef Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M.: The effect of silane treated- and untreated- talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. B 38, 367–379 (2007)CrossRef
35.
go back to reference Kim, H.S., Park, B.H., Choi, J.H., Yoon, J.S.: Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 109, 3087–3092 (2008)CrossRef Kim, H.S., Park, B.H., Choi, J.H., Yoon, J.S.: Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 109, 3087–3092 (2008)CrossRef
36.
go back to reference Wang, N., Zhang, X., Ma, X., Fang, J.: Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym. Degrad. Stab. 93, 1044–1052 (2008)CrossRef Wang, N., Zhang, X., Ma, X., Fang, J.: Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym. Degrad. Stab. 93, 1044–1052 (2008)CrossRef
37.
go back to reference Giannelis, E.P.: Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 12(10–11), 675–680 (1998)CrossRef Giannelis, E.P.: Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 12(10–11), 675–680 (1998)CrossRef
38.
go back to reference Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28(1–2), 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28(1–2), 1–63 (2000)CrossRef
39.
go back to reference Ogata, N., Jimenez, G., Kawai, H., Ogihara, T.: Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J. Polym. Sci., Part B: Polym. Phys. 35, 389–396 (1997)CrossRef Ogata, N., Jimenez, G., Kawai, H., Ogihara, T.: Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J. Polym. Sci., Part B: Polym. Phys. 35, 389–396 (1997)CrossRef
40.
go back to reference Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1997) Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1997)
41.
go back to reference Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef
42.
go back to reference Ray, S.S., Maiti, P., Okamoto, M., Yamada, K., Ueda, K.: New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)CrossRef Ray, S.S., Maiti, P., Okamoto, M., Yamada, K., Ueda, K.: New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)CrossRef
43.
go back to reference Maiti, P., Yamada, K., Okamoto, M., Ueda, K., Okamoto, K.: New polylactice/layered silicate nanocomposites: Role of organocalys. Chem. Mater. 14(11), 4654–4661 (2002)CrossRef Maiti, P., Yamada, K., Okamoto, M., Ueda, K., Okamoto, K.: New polylactice/layered silicate nanocomposites: Role of organocalys. Chem. Mater. 14(11), 4654–4661 (2002)CrossRef
44.
go back to reference Nam, J.Y., Ray, S.S., Okamoto, M.: Crystallization behavior and Morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36, 7126–7131 (2003)CrossRef Nam, J.Y., Ray, S.S., Okamoto, M.: Crystallization behavior and Morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36, 7126–7131 (2003)CrossRef
45.
go back to reference Lee, H.J., Park, T.G., Park, H.S., Lee, D.S., Lee, Y.K., Yoon, S.C., Nam, J.: Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold. Biomaterials 24, 2773–2778 (2003)CrossRef Lee, H.J., Park, T.G., Park, H.S., Lee, D.S., Lee, Y.K., Yoon, S.C., Nam, J.: Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold. Biomaterials 24, 2773–2778 (2003)CrossRef
46.
go back to reference Krikorian, V., Pochan, D.J.: Poly(L-lactic acid)/layered silicate nanocomposite: Fabrication, characterization, and properties. Chem. Mater. 15, 4317–4324 (2003)CrossRef Krikorian, V., Pochan, D.J.: Poly(L-lactic acid)/layered silicate nanocomposite: Fabrication, characterization, and properties. Chem. Mater. 15, 4317–4324 (2003)CrossRef
47.
go back to reference Di, Y., Iannace, S., Maio, E.D., Nicolais, L.: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci., Part B: Polym. Phys. 43, 689–698 (2005)CrossRef Di, Y., Iannace, S., Maio, E.D., Nicolais, L.: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci., Part B: Polym. Phys. 43, 689–698 (2005)CrossRef
48.
go back to reference Petersson, L., Oksman, K.: Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 66, 2187–2196 (2006)CrossRef Petersson, L., Oksman, K.: Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 66, 2187–2196 (2006)CrossRef
49.
go back to reference Pluta, M.: Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 44, 3392–3405 (2006)CrossRef Pluta, M.: Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 44, 3392–3405 (2006)CrossRef
50.
go back to reference Wu, T.M., Wu, C.Y.: Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stab. 91, 2198–2204 (2006)CrossRef Wu, T.M., Wu, C.Y.: Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stab. 91, 2198–2204 (2006)CrossRef
51.
go back to reference Pluta, M., Jeszka, J.K., Boiteux, G.: Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. Eur. Polymer J. 43, 2819–2835 (2007)CrossRef Pluta, M., Jeszka, J.K., Boiteux, G.: Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. Eur. Polymer J. 43, 2819–2835 (2007)CrossRef
52.
go back to reference Jiang, L., Zhang, J., Wolcott, M.P.: Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 48, 7632–7644 (2007)CrossRef Jiang, L., Zhang, J., Wolcott, M.P.: Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 48, 7632–7644 (2007)CrossRef
53.
go back to reference Chow, W.S., Lok, S.K.: Flexural, morphological and thermal properties of polylactic acid/organo-montmorillonite nanocomposites. Polym. Polym. Compos. 16(4), 263–270 (2008) Chow, W.S., Lok, S.K.: Flexural, morphological and thermal properties of polylactic acid/organo-montmorillonite nanocomposites. Polym. Polym. Compos. 16(4), 263–270 (2008)
54.
go back to reference Paul, M.A., Alexandre, M., Dege´e, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: Thermal and morphological study. Polymer 44, 443–450 (2003)CrossRef Paul, M.A., Alexandre, M., Dege´e, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: Thermal and morphological study. Polymer 44, 443–450 (2003)CrossRef
55.
go back to reference Pluta, M.: Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45, 8239–8251 (2004)CrossRef Pluta, M.: Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45, 8239–8251 (2004)CrossRef
56.
go back to reference Thellen, C., Orroth, C., Froio, D., Ziegler, D., Lucciarini, J., Farrell, R., D’Souza, N.A., Ann, J.: Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films. Polymer 46, 11716–11727 (2005)CrossRef Thellen, C., Orroth, C., Froio, D., Ziegler, D., Lucciarini, J., Farrell, R., D’Souza, N.A., Ann, J.: Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films. Polymer 46, 11716–11727 (2005)CrossRef
57.
go back to reference Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. I. the role of filler content and its surface organo-modification on the physico-chemical properties. J. Polym. Sci., Part B: Polym. Phys. 44, 299–311 (2006)CrossRef Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. I. the role of filler content and its surface organo-modification on the physico-chemical properties. J. Polym. Sci., Part B: Polym. Phys. 44, 299–311 (2006)CrossRef
58.
go back to reference Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. II. the effect of aging on structure and properties in relation to the filler content and the nature of its organo-modification. J. Polym. Sci., Part B: Polym. Phys. 44, 312–325 (2006)CrossRef Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. II. the effect of aging on structure and properties in relation to the filler content and the nature of its organo-modification. J. Polym. Sci., Part B: Polym. Phys. 44, 312–325 (2006)CrossRef
59.
go back to reference Balakrishnan, H., Hassan, A., Imran, M., Wahit, M.U.: Toughening of polylactic acid nanocomposites: A short review. Polym. Plast. Technol. Eng. 51(2), 175–192 (2012)CrossRef Balakrishnan, H., Hassan, A., Imran, M., Wahit, M.U.: Toughening of polylactic acid nanocomposites: A short review. Polym. Plast. Technol. Eng. 51(2), 175–192 (2012)CrossRef
60.
go back to reference Li, T., Turng, L.S., Gong, S., Erlacher, K.: Polylactide, nanoclay, and core–shell rubber composites. Polym. Eng. Sci. 46(10), 1419–1427 (2006)CrossRef Li, T., Turng, L.S., Gong, S., Erlacher, K.: Polylactide, nanoclay, and core–shell rubber composites. Polym. Eng. Sci. 46(10), 1419–1427 (2006)CrossRef
61.
go back to reference Balakrishnan, H., Hassan, A., Wahit, M.U., Yussuf, A.A., Abdul Razak, S.B.: Novel toughened polylactic acid nanocomposites: Mechanical, thermal and morphological properties. Mater. Des. 31, 3289–3298 (2010)CrossRef Balakrishnan, H., Hassan, A., Wahit, M.U., Yussuf, A.A., Abdul Razak, S.B.: Novel toughened polylactic acid nanocomposites: Mechanical, thermal and morphological properties. Mater. Des. 31, 3289–3298 (2010)CrossRef
62.
go back to reference Balakrishnan, H., Masomi, I., Yussuf, A.A., Imran, M., Hassan, A., Wahit, M.U.: Ethylene copolymer toughened polylactic acid nanocomposites. Polym. Plast. Technol. Eng. 51(1), 19–27 (2012)CrossRef Balakrishnan, H., Masomi, I., Yussuf, A.A., Imran, M., Hassan, A., Wahit, M.U.: Ethylene copolymer toughened polylactic acid nanocomposites. Polym. Plast. Technol. Eng. 51(1), 19–27 (2012)CrossRef
63.
go back to reference Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
64.
go back to reference Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)CrossRef Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)CrossRef
65.
go back to reference Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef
66.
go back to reference Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265, 1212–1214 (1994)CrossRef Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265, 1212–1214 (1994)CrossRef
67.
go back to reference Song, W., Zheng, Z., Tang, W., Wang, X.: A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48, 3658–3663 (2007)CrossRef Song, W., Zheng, Z., Tang, W., Wang, X.: A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48, 3658–3663 (2007)CrossRef
68.
go back to reference Kobashi, K., Villmow, T., Andres, T., Pötschke, P.: Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators, B 134, 787–795 (2008)CrossRef Kobashi, K., Villmow, T., Andres, T., Pötschke, P.: Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators, B 134, 787–795 (2008)CrossRef
69.
go back to reference Kuan, C.F., Chen, C.H., Kuan, H.C., Lin, K.C., Chiang, C.L., Peng, H.C.: Multi-walled carbon nanotube reinforced poly(L-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J. Phys. Chem. Solids 69, 1399–1402 (2008)CrossRef Kuan, C.F., Chen, C.H., Kuan, H.C., Lin, K.C., Chiang, C.L., Peng, H.C.: Multi-walled carbon nanotube reinforced poly(L-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J. Phys. Chem. Solids 69, 1399–1402 (2008)CrossRef
70.
go back to reference Tsuji, H., Kawashima, Y., Takikawa, H., Tanaka, S.: Poly(L-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48, 4213–4225 (2007)CrossRef Tsuji, H., Kawashima, Y., Takikawa, H., Tanaka, S.: Poly(L-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48, 4213–4225 (2007)CrossRef
71.
go back to reference Wu, C.S., Liao, H.T.: Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48, 4449–4458 (2007)CrossRef Wu, C.S., Liao, H.T.: Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48, 4449–4458 (2007)CrossRef
72.
go back to reference Wu, D., Wu, L., Zhang, M., Zhao, Y.: Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym. Degrad. Stab. 93, 1577–1584 (2008)CrossRef Wu, D., Wu, L., Zhang, M., Zhao, Y.: Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym. Degrad. Stab. 93, 1577–1584 (2008)CrossRef
73.
go back to reference Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)CrossRef Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)CrossRef
74.
go back to reference Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002)CrossRef Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002)CrossRef
75.
go back to reference Gopalan, N.K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)CrossRef Gopalan, N.K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)CrossRef
76.
go back to reference Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)CrossRef Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)CrossRef
77.
go back to reference Petersson, L., Kvien, I., Oksman, K.: Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67, 2535–2544 (2007)CrossRef Petersson, L., Kvien, I., Oksman, K.: Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67, 2535–2544 (2007)CrossRef
Metadata
Title
Polylactic Acid Based Blends, Composites and Nanocomposites
Authors
Azman Hassan
Harintharavimal Balakrishnan
Abozar Akbari
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20940-6_11

Premium Partners