Skip to main content
Top

2014 | OriginalPaper | Chapter

2. Porous Carbons for Carbon Dioxide Capture

Authors : An-Hui Lu, Guang-Ping Hao, Xiang-Qian Zhang

Published in: Porous Materials for Carbon Dioxide Capture

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous carbons play an important role in CO2 adsorption and separation due to their developed porosity, excellent stability, wide availability, and tunable surface chemistry. In this chapter, the synthesis strategies of porous carbon materials and evaluation of their performance in CO2 capture are reviewed. For clarity, porous carbons are mainly classified into the following categories: conventional activated carbons (ACs), renewable-resources-derived porous carbons, synthetic polymer-based porous carbons, graphitic porous carbons, etc. In each category, macroscopic and microscopic morphologies, synthesis principles, pore structures, composition and surface chemistry features as well as their CO2 capture behavior are included. Among them, porous carbons with targeted functionalization and a vast range of nanostructured carbons (carbon nanofibers, CNTs, graphene, etc.) for CO2 capture are being created at an increasing rate and are highlighted. After that, the main influence factors determining CO2 capture performance including the pore features and heteroatom decoration are particularly discussed. In the end, we briefly summarize and discuss the future prospectives of porous carbons for CO2 capture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175 Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175
2.
go back to reference Kyotani T (2006) Synthesis of various types of nano carbons using the template technique. Bull Chem Soc Jpn 79:1322–1337 Kyotani T (2006) Synthesis of various types of nano carbons using the template technique. Bull Chem Soc Jpn 79:1322–1337
3.
go back to reference Himeno S, Komatsu T, Fujita S (2005) High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data 50:369–376 Himeno S, Komatsu T, Fujita S (2005) High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data 50:369–376
4.
go back to reference Olivares-Marín M, Maroto-Valer M (2012) Development of adsorbents for CO2 capture from waste materials: a review. Greenhouse Gas Sci Technol 2:20–35 Olivares-Marín M, Maroto-Valer M (2012) Development of adsorbents for CO2 capture from waste materials: a review. Greenhouse Gas Sci Technol 2:20–35
5.
go back to reference Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806 Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806
6.
go back to reference Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327 Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327
7.
go back to reference Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22:13911–13913 Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22:13911–13913
8.
go back to reference Shen W, He Y, Zhang S, Li J, Fan W (2012) Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem 5:1274–1279 Shen W, He Y, Zhang S, Li J, Fan W (2012) Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem 5:1274–1279
9.
go back to reference Marco-Lozar JP, Kunowsky M, Suárez-García F, Carruthers JD, Linares-Solano A (2012) Activated carbon monoliths for gas storage at room temperature. Energy Environ Sci 5:9833–9842 Marco-Lozar JP, Kunowsky M, Suárez-García F, Carruthers JD, Linares-Solano A (2012) Activated carbon monoliths for gas storage at room temperature. Energy Environ Sci 5:9833–9842
10.
go back to reference Thote JA, Iyer KS, Chatti R, Labhsetwar NK, Biniwale RB, Rayalu SS (2010) In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48:396–402 Thote JA, Iyer KS, Chatti R, Labhsetwar NK, Biniwale RB, Rayalu SS (2010) In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48:396–402
11.
go back to reference Sevilla M, Valle-Vigón P, Fuerte AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787 Sevilla M, Valle-Vigón P, Fuerte AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787
12.
go back to reference White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418 White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418
13.
go back to reference Grzyb B, Hildenbrand C, Berthon-Fabry S, Bégin D, Job N, Rigacci A, Achard P (2010) Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48:2297–2307 Grzyb B, Hildenbrand C, Berthon-Fabry S, Bégin D, Job N, Rigacci A, Achard P (2010) Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48:2297–2307
14.
go back to reference ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903 ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903
15.
go back to reference Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789 Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789
16.
go back to reference Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212 Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212
17.
go back to reference Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822 Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822
18.
go back to reference Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771 Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771
19.
go back to reference Sevilla M, Falco C, Titirici M-M, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2:12792–12797 Sevilla M, Falco C, Titirici M-M, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2:12792–12797
20.
go back to reference Gaweł B, Gaweł K, Øye G (2010) Sol–gel synthesis of non-silica monolithic materials. Materials 3:2815–2833 Gaweł B, Gaweł K, Øye G (2010) Sol–gel synthesis of non-silica monolithic materials. Materials 3:2815–2833
21.
go back to reference Kadib AE, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew Chem Int Ed 48:4969–4972 Kadib AE, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew Chem Int Ed 48:4969–4972
22.
go back to reference Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821 Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821
23.
go back to reference Yuan Z-Y, Su B-L (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–667 Yuan Z-Y, Su B-L (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–667
24.
go back to reference Lu AH, Hao GP (2013) Porous materials for carbon dioxide capture. Annu Rep Sect A: Inorg Chem 109:484–503 Lu AH, Hao GP (2013) Porous materials for carbon dioxide capture. Annu Rep Sect A: Inorg Chem 109:484–503
25.
go back to reference Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805 Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805
26.
go back to reference Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094 Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094
27.
go back to reference Hoheisel TN, Schrettl S, Szilluweit R, Frauenrath H (2010) Nanostructured carbonaceous materials from molecular precursors. Angew Chem Int Ed 49:6496–6515 Hoheisel TN, Schrettl S, Szilluweit R, Frauenrath H (2010) Nanostructured carbonaceous materials from molecular precursors. Angew Chem Int Ed 49:6496–6515
28.
go back to reference Tao Y, Endo M, Kaneko K (2009) Hydrophilicity-controlled carbon aerogels with high mesoporosity. J Am Chem Soc 131:904–905 Tao Y, Endo M, Kaneko K (2009) Hydrophilicity-controlled carbon aerogels with high mesoporosity. J Am Chem Soc 131:904–905
29.
go back to reference Silva AMT, Machado BF, Figueiredo JL, Faria JL (2009) Controlling the surface chemistry of carbon xerogels using HNO3 hydrothermal activation. Carbon 47:1670–1679 Silva AMT, Machado BF, Figueiredo JL, Faria JL (2009) Controlling the surface chemistry of carbon xerogels using HNO3 hydrothermal activation. Carbon 47:1670–1679
30.
go back to reference Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293 Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293
31.
go back to reference Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667 Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667
32.
go back to reference Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227 Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227
33.
go back to reference Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2008) Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. Langmuir 24:2820–2825 Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2008) Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. Langmuir 24:2820–2825
34.
go back to reference Gutiérrez MC, Rubio F, del Monte F (2010) Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon−carbon nanotube composites. Chem Mater 22:2711–2719 Gutiérrez MC, Rubio F, del Monte F (2010) Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon−carbon nanotube composites. Chem Mater 22:2711–2719
35.
go back to reference Carriazo D, Gutiérrez MC, Ferrer ML, del Monte F (2010) Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monolith. Schem Mater 22:6146–6152 Carriazo D, Gutiérrez MC, Ferrer ML, del Monte F (2010) Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monolith. Schem Mater 22:6146–6152
36.
go back to reference Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem Mater 20:6985–6997 Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem Mater 20:6985–6997
37.
go back to reference Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu H, Churu G, Mang JT (2010) Multifunctional polyurea aerogels from isocyanates and water. A structure-property case study. Chem. Mater. 22:6692–6710 Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu H, Churu G, Mang JT (2010) Multifunctional polyurea aerogels from isocyanates and water. A structure-property case study. Chem. Mater. 22:6692–6710
38.
go back to reference Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, Mang JT, Leventis N (2010) One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem 20:6978–9666 Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, Mang JT, Leventis N (2010) One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem 20:6978–9666
39.
go back to reference Wan Y, Qian X, Jia N, Wang Z, Li H, Zhao D (2008) Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater 20:1012–1018 Wan Y, Qian X, Jia N, Wang Z, Li H, Zhao D (2008) Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater 20:1012–1018
40.
go back to reference Sepehri S, García BB, Zhang Q, Cao G (2009) Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47:1436–1443 Sepehri S, García BB, Zhang Q, Cao G (2009) Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47:1436–1443
41.
go back to reference Hao G-P, Li W-C, Qian D, Lu A-H (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857 Hao G-P, Li W-C, Qian D, Lu A-H (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857
42.
go back to reference Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991 Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991
43.
go back to reference Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951 Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951
44.
go back to reference Tien BM, Xu MW, Liu JF (2010) Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery. Mater Lett 64:1465–1467 Tien BM, Xu MW, Liu JF (2010) Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery. Mater Lett 64:1465–1467
45.
go back to reference Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42:169–175 Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42:169–175
46.
go back to reference Fujikawa D, Uota M, Sakai G, Kijima T (2007) Shape-controlled synthesis of nanocarbons from resorcinol–formaldehyde nanopolymers using surfactant-templated vesicular assemblies. Carbon 45:1289–1295 (Original Research Article) Fujikawa D, Uota M, Sakai G, Kijima T (2007) Shape-controlled synthesis of nanocarbons from resorcinol–formaldehyde nanopolymers using surfactant-templated vesicular assemblies. Carbon 45:1289–1295 (Original Research Article)
47.
go back to reference Liu L, Deng QF, Hou XX, Yuan ZY (2012) User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J Mater Chem 22:15540–15548 Liu L, Deng QF, Hou XX, Yuan ZY (2012) User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J Mater Chem 22:15540–15548
48.
go back to reference Gu JM, Kim WS, Hwang YK, Huh S (2013) Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 56:208–217 Gu JM, Kim WS, Hwang YK, Huh S (2013) Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 56:208–217
49.
go back to reference Liang CD, Hong KL, Guiochon GA, Mays JW, Dai S (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed 43:5785–5789 Liang CD, Hong KL, Guiochon GA, Mays JW, Dai S (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed 43:5785–5789
50.
go back to reference Valkama S, Nykänen A, Kosonen H, Ramani R, Tuomisto F, Engelhardt P, Brinke G, Ikkala O, Ruokolainen J (2007) Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro- and mesoporosity. Adv Funct Mater 17:183–190 Valkama S, Nykänen A, Kosonen H, Ramani R, Tuomisto F, Engelhardt P, Brinke G, Ikkala O, Ruokolainen J (2007) Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro- and mesoporosity. Adv Funct Mater 17:183–190
51.
go back to reference Liang CD, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317 Liang CD, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317
52.
go back to reference Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345:402–409 Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345:402–409
53.
go back to reference Wang X, Liang C, Dai S (2008) Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. Langmuir 24:7500–7505 Wang X, Liang C, Dai S (2008) Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. Langmuir 24:7500–7505
54.
go back to reference Liang C, Dai S (2009) Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths. Chem Mater 21:2115–2124 Liang C, Dai S (2009) Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths. Chem Mater 21:2115–2124
55.
go back to reference Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643 Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643
56.
go back to reference Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328 Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328
57.
go back to reference Liu L, Wang F-Y, Shao G-S, Yuan Z-Y (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon 48:2089–2099 Liu L, Wang F-Y, Shao G-S, Yuan Z-Y (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon 48:2089–2099
58.
go back to reference Gutiérrez MC, Picó F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, Monte F, Rojo JM (2009) PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem 19:1236–1240 Gutiérrez MC, Picó F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, Monte F, Rojo JM (2009) PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem 19:1236–1240
59.
go back to reference Zhao X, Wang A, Yan J, Sun G, Sun L, Zhang T (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22:5463–5473 Zhao X, Wang A, Yan J, Sun G, Sun L, Zhang T (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22:5463–5473
60.
go back to reference Hao G-P, Li W-C, Wang S, Wang G-H, Qi L, Lu A-H (2011) Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49:3762–3772 Hao G-P, Li W-C, Wang S, Wang G-H, Qi L, Lu A-H (2011) Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49:3762–3772
61.
go back to reference Hao G-P, Li W-C, Qian D, Wang G-H, Zhang W-P, Zhang T, Wang A-Q, Schüth F, Bongard H-J, Lu A-H (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 133:11378–11388 Hao G-P, Li W-C, Qian D, Wang G-H, Zhang W-P, Zhang T, Wang A-Q, Schüth F, Bongard H-J, Lu A-H (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 133:11378–11388
62.
go back to reference Wang Z, Li F, Ergang NS, Stein A (2006) Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon−carbon nanocomposites. Chem Mater 18:5543–5553 Wang Z, Li F, Ergang NS, Stein A (2006) Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon−carbon nanocomposites. Chem Mater 18:5543–5553
63.
go back to reference Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley PA, Wang H, Zhao D (2007) Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 19:3271–3277 Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley PA, Wang H, Zhao D (2007) Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 19:3271–3277
64.
go back to reference Xue C, Tu B, Zhao D (2008) Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv Funct Mater 18:3914–3921 Xue C, Tu B, Zhao D (2008) Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv Funct Mater 18:3914–3921
65.
go back to reference Wei H, Lv Y, Han L, Tu B, Zhao D (2011) Facile synthesis of transparent mesostructured composites and corresponding crack-free mesoporous carbon/silica monoliths. Chem Mater 23:2353–2360 Wei H, Lv Y, Han L, Tu B, Zhao D (2011) Facile synthesis of transparent mesostructured composites and corresponding crack-free mesoporous carbon/silica monoliths. Chem Mater 23:2353–2360
66.
go back to reference Liu CY, Li LX, Song HH, Chen XH (2007) Facile synthesis of ordered mesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem Commun 7:757–759 Liu CY, Li LX, Song HH, Chen XH (2007) Facile synthesis of ordered mesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem Commun 7:757–759
67.
go back to reference Feng D, Lv YY, Wu ZX, Dou YQ, Han L, Sun ZK, Xia YY, Zheng GF, Zhao DY (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15150 Feng D, Lv YY, Wu ZX, Dou YQ, Han L, Sun ZK, Xia YY, Zheng GF, Zhao DY (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15150
68.
go back to reference Rodriguez AT, Li XF, Wang J, Steen WA, Fan HY (2007) Facile synthesis of nanostructured carbon through self-assembly between block copolymers and carbohydrates. Adv Funct Mater 17:2710–2716 Rodriguez AT, Li XF, Wang J, Steen WA, Fan HY (2007) Facile synthesis of nanostructured carbon through self-assembly between block copolymers and carbohydrates. Adv Funct Mater 17:2710–2716
69.
go back to reference Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059 Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059
70.
go back to reference Yoshimune M, Yamamoto T, Nakaiwa M, Haraya K (2008) Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde. Carbon 46:1031–1036 Yoshimune M, Yamamoto T, Nakaiwa M, Haraya K (2008) Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde. Carbon 46:1031–1036
71.
go back to reference Hao G-P, Jin Z-Y, Sun Q, Zhang X-Q, Zhang J-T, Lu A-H (2013) Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ Sci 2013(6):3740–3747 Hao G-P, Jin Z-Y, Sun Q, Zhang X-Q, Zhang J-T, Lu A-H (2013) Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ Sci 2013(6):3740–3747
72.
go back to reference Sun X, Li Y (2005) Hollow carbonaceous capsules from glucose solution. J Colloid Interface Sci 291:7–12 Sun X, Li Y (2005) Hollow carbonaceous capsules from glucose solution. J Colloid Interface Sci 291:7–12
73.
go back to reference Li Y, Chen J, Xu Q, He L, Chen Z (2009) Controllable route to solid and hollow monodisperse carbon nanospheres. J Phys Chem C 113:10085–10089 Li Y, Chen J, Xu Q, He L, Chen Z (2009) Controllable route to solid and hollow monodisperse carbon nanospheres. J Phys Chem C 113:10085–10089
74.
go back to reference Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951 Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951
75.
go back to reference Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855 Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855
76.
go back to reference Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116 Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116
77.
go back to reference Wickramaratne NP, Perera VS, Ralph JM, Huang SD, Jaroniec M (2013) Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. Langmuir 29(12):4032–4038 Wickramaratne NP, Perera VS, Ralph JM, Huang SD, Jaroniec M (2013) Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. Langmuir 29(12):4032–4038
78.
go back to reference Zeng Q, Wu D, Zou C, Xu F, Fu R, Li Z, Liang Y, Su D (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929 Zeng Q, Wu D, Zou C, Xu F, Fu R, Li Z, Liang Y, Su D (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929
79.
go back to reference Jiang P, Bertone JF, Colvin VL (2001) A lost-wax approach to monodisperse colloids and their crystals. Science 291:453–457 Jiang P, Bertone JF, Colvin VL (2001) A lost-wax approach to monodisperse colloids and their crystals. Science 291:453–457
80.
go back to reference Lu A-H, Hao G-P, Sun Q (2011) Can carbon spheres be created through the Stöber method? Angew Chem Int Ed 50:9023–9025 Lu A-H, Hao G-P, Sun Q (2011) Can carbon spheres be created through the Stöber method? Angew Chem Int Ed 50:9023–9025
81.
go back to reference Wang S, Li W-C, Hao G-P, Hao Y, Sun Q, Zhang X-Q, Lu A-H (2011) Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J Am Chem Soc 133:15304 Wang S, Li W-C, Hao G-P, Hao Y, Sun Q, Zhang X-Q, Lu A-H (2011) Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J Am Chem Soc 133:15304
82.
go back to reference Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863 Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863
83.
go back to reference Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Pécastaings G, Derré A, Soum A, Deleuze H, Birot M, Backov R (2009) Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv Funct Mater 19:3136 Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Pécastaings G, Derré A, Soum A, Deleuze H, Birot M, Backov R (2009) Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv Funct Mater 19:3136
84.
go back to reference Alvarez S, Esquena J, Solans C, Fuertes AB (2004) Meso/macroporous carbon monoliths from polymeric foams. Adv Eng Mater 6:897 Alvarez S, Esquena J, Solans C, Fuertes AB (2004) Meso/macroporous carbon monoliths from polymeric foams. Adv Eng Mater 6:897
85.
go back to reference Yang H, Shi Q, Liu X, Xie S, Jiang D, Zhang F, Yu C, Tu B, Zhao D (2002) Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem Commun 23:2842 Yang H, Shi Q, Liu X, Xie S, Jiang D, Zhang F, Yu C, Tu B, Zhao D (2002) Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem Commun 23:2842
86.
go back to reference Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381 Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381
87.
go back to reference Xia Y, Mokaya R (2007) Ordered mesoporous carbon monoliths: CVD nanocasting and hydrogen storage properties. J Phys Chem C 111:10035–10039 Xia Y, Mokaya R (2007) Ordered mesoporous carbon monoliths: CVD nanocasting and hydrogen storage properties. J Phys Chem C 111:10035–10039
88.
go back to reference Taguchi A, Smått J-H, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15:1209–1211 Taguchi A, Smått J-H, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15:1209–1211
89.
go back to reference Lu A-H, Smått J-H, Lindén M (2005) Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv Func Mater 15:865–871 Lu A-H, Smått J-H, Lindén M (2005) Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv Func Mater 15:865–871
90.
go back to reference Lu A-H, Smått J-H, Backlund S, Lindén M (2004) Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater 72:59–65 Lu A-H, Smått J-H, Backlund S, Lindén M (2004) Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater 72:59–65
91.
go back to reference Shi Z-G, Feng Y-Q, Xu L, Da S-L, Zhang M (2003) Synthesis of a carbon monolith with trimodal pores. Carbon 41:2677–2679 Shi Z-G, Feng Y-Q, Xu L, Da S-L, Zhang M (2003) Synthesis of a carbon monolith with trimodal pores. Carbon 41:2677–2679
92.
go back to reference Hu Y-S, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878 Hu Y-S, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878
93.
go back to reference Liu N, Yin L, Wang C, Zhang L, Lun N, Xiang D, Qi Y, Gao R (2010) Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon 48:3579–3591 Liu N, Yin L, Wang C, Zhang L, Lun N, Xiang D, Qi Y, Gao R (2010) Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon 48:3579–3591
94.
go back to reference Han B-H, Zhou W, Sayari A (2003) Direct preparation of nanoporous carbon by nanocasting. J Am Chem Soc 125:3444–3445 Han B-H, Zhou W, Sayari A (2003) Direct preparation of nanoporous carbon by nanocasting. J Am Chem Soc 125:3444–3445
95.
go back to reference Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827 Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827
96.
go back to reference Li Q, Yang J, Feng D, Wu Z, Wu Q, Park SS, Ha CS, Zhao D (2010) Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res 3:632–642 Li Q, Yang J, Feng D, Wu Z, Wu Q, Park SS, Ha CS, Zhao D (2010) Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res 3:632–642
97.
go back to reference Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498 Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498
98.
go back to reference Pachfule P, Biswal BP, Banerjee R (2012) Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem Eur J 18:11399–11408 Pachfule P, Biswal BP, Banerjee R (2012) Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem Eur J 18:11399–11408
99.
go back to reference Deng H, Jin S, Zhan L, Wang Y, Lu B, Qiao W, Ling L (2012) Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide. New Carbon Mater 27:194–199 Deng H, Jin S, Zhan L, Wang Y, Lu B, Qiao W, Ling L (2012) Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide. New Carbon Mater 27:194–199
100.
go back to reference Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152 Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152
101.
go back to reference Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867 Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867
102.
go back to reference Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470 Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470
103.
go back to reference Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KC-W, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261 Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KC-W, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261
104.
go back to reference Lim S, Suh K, Kim Y, Yoon M, Park H, Dybtsev DN, Kim K (2012) Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Chem Commun 48:7447–7449 Lim S, Suh K, Kim Y, Yoon M, Park H, Dybtsev DN, Kim K (2012) Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Chem Commun 48:7447–7449
105.
go back to reference Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376 Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376
106.
go back to reference Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556 Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556
107.
go back to reference Adelhelm P, Hu Y-S, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19:4012–4017 Adelhelm P, Hu Y-S, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19:4012–4017
108.
go back to reference Gierszal KP, Jaroniec M (2006) Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc 128:10026–10027 Gierszal KP, Jaroniec M (2006) Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc 128:10026–10027
109.
go back to reference Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22:3433–3440 Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22:3433–3440
110.
go back to reference Fang B, Kim M-S, Kim JH, Lim S, Yu J-S (2010) Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J Mater Chem 20:10253–10259 Fang B, Kim M-S, Kim JH, Lim S, Yu J-S (2010) Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J Mater Chem 20:10253–10259
111.
go back to reference Liang Y, Liang F, Wu D, Li Z, Xu F, Fu R (2011) Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Phys Chem Chem Phys 13:8852–8856 Liang Y, Liang F, Wu D, Li Z, Xu F, Fu R (2011) Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Phys Chem Chem Phys 13:8852–8856
112.
go back to reference Meng LY, Park SJ (2012) Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon. J Colloid Interface Sci 366:125–129 Meng LY, Park SJ (2012) Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon. J Colloid Interface Sci 366:125–129
113.
go back to reference Bhagiyalakshmi M, Hemalatha P, Ganesh M, Mei PM, Jang HT (2011) A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel 90:1662–1667 Bhagiyalakshmi M, Hemalatha P, Ganesh M, Mei PM, Jang HT (2011) A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel 90:1662–1667
114.
go back to reference Czyèwski A, Kapica J, Moszyǹski D, Pietrzak R, Przepiórski J (2013) On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem Eng J 226:348–356 Czyèwski A, Kapica J, Moszyǹski D, Pietrzak R, Przepiórski J (2013) On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem Eng J 226:348–356
115.
go back to reference Meng L-Y, Park S-J (2012) MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation. Mater Chem Phys 137:91–96 Meng L-Y, Park S-J (2012) MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation. Mater Chem Phys 137:91–96
116.
go back to reference Su F, Zhao XS, Wang Y, Lee JY (2007) Bridging mesoporous carbon particles with carbon nanotubes. Microporous Mesoporous Mater 98:323–329 Su F, Zhao XS, Wang Y, Lee JY (2007) Bridging mesoporous carbon particles with carbon nanotubes. Microporous Mesoporous Mater 98:323–329
117.
go back to reference Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381 Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381
118.
go back to reference Huwe H, Froeba M (2007) Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. Carbon 45:304–314 Huwe H, Froeba M (2007) Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. Carbon 45:304–314
119.
go back to reference Wikander K, Hungria AB, Midgley PA, Palmqvist AEC, Holmberg K, Thomas JM (2007) Incorporation of platinum nanoparticles in ordered mesoporous carbon. J Colloid Interface Sci 305:204–208 Wikander K, Hungria AB, Midgley PA, Palmqvist AEC, Holmberg K, Thomas JM (2007) Incorporation of platinum nanoparticles in ordered mesoporous carbon. J Colloid Interface Sci 305:204–208
120.
go back to reference Jang JH, Han S, Hyeon T, Oh SM (2003) Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123:79–85 Jang JH, Han S, Hyeon T, Oh SM (2003) Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123:79–85
121.
go back to reference Kim H, Kim P, Joo JB, Kim W, Song IK, Yi J (2006) Fabrication of a mesoporous Pt-carbon catalyst by the direct templating of mesoporous Pt-alumina for the methanol electro-oxidation. J Power Sources 157:196–200 Kim H, Kim P, Joo JB, Kim W, Song IK, Yi J (2006) Fabrication of a mesoporous Pt-carbon catalyst by the direct templating of mesoporous Pt-alumina for the methanol electro-oxidation. J Power Sources 157:196–200
122.
go back to reference García-Martínez J, Lancaster TM, Ying JY (2008) Synthesis and catalytic applications of self-assembled carbon nanofoams. Adv Mater 20:288–292 García-Martínez J, Lancaster TM, Ying JY (2008) Synthesis and catalytic applications of self-assembled carbon nanofoams. Adv Mater 20:288–292
123.
go back to reference Long D, Chen Q, Qiao W, Zhan L, Liang X, Ling L (2009) Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation. Chem Commun 26:3898–3900 Long D, Chen Q, Qiao W, Zhan L, Liang X, Ling L (2009) Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation. Chem Commun 26:3898–3900
124.
go back to reference Nielsen TK, Bösenberg U, Gosalawit R, Dornheim M, Cerenius Y, Besenbacher F, Jensen TR (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908 Nielsen TK, Bösenberg U, Gosalawit R, Dornheim M, Cerenius Y, Besenbacher F, Jensen TR (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908
125.
go back to reference Worsley MA, Kuntz JD, Cervantes O, Han TY-J, Gash AE, Satcher JH, Baumann TF (2009) Route to high surface area TiO2/C and TiCN/C composites. J Mater Chem 19:7146–7150 Worsley MA, Kuntz JD, Cervantes O, Han TY-J, Gash AE, Satcher JH, Baumann TF (2009) Route to high surface area TiO2/C and TiCN/C composites. J Mater Chem 19:7146–7150
126.
go back to reference Han TY-J, Worsley MA, Baumann TF, Satcher JH (2011) Synthesis of ZnO coated activated carbon aerogel by simple sol–gel route. J Mater Chem 21:330–333 Han TY-J, Worsley MA, Baumann TF, Satcher JH (2011) Synthesis of ZnO coated activated carbon aerogel by simple sol–gel route. J Mater Chem 21:330–333
127.
go back to reference Worsley MA, Kucheyev SO, Satcher JH, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115 Worsley MA, Kucheyev SO, Satcher JH, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115
128.
go back to reference Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069 Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069
129.
go back to reference Worsley MA, Olson TY, Lee JRI, Willey TM, Nielsen MH, Roberts SK, Pauzauskie PJ, Biener J, Satcher J, Baumann TF (2011) High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2:921–925 Worsley MA, Olson TY, Lee JRI, Willey TM, Nielsen MH, Roberts SK, Pauzauskie PJ, Biener J, Satcher J, Baumann TF (2011) High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2:921–925
130.
go back to reference Jin Y, Hawkins SC, Huynh CP, Su S (2013) Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci 6:2591–2596 Jin Y, Hawkins SC, Huynh CP, Su S (2013) Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci 6:2591–2596
131.
go back to reference Qian D, Lei C, Hao G-P, Li W-C, Lu A-H (2012) Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability. ACS Appl Mater Interfaces 4:6125 Qian D, Lei C, Hao G-P, Li W-C, Lu A-H (2012) Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability. ACS Appl Mater Interfaces 4:6125
132.
go back to reference Lu A-H, Li W-C, Salabas E-L, Spliethoff B, Schüth F (2006) Low temperature catalytic pyrolysis for the synthesis of high surface area. Nanostruct Graphitic Carbon Chem Mater 18:2086–2094 Lu A-H, Li W-C, Salabas E-L, Spliethoff B, Schüth F (2006) Low temperature catalytic pyrolysis for the synthesis of high surface area. Nanostruct Graphitic Carbon Chem Mater 18:2086–2094
133.
go back to reference Liang C, Dai S, Guiochon G (2003) A graphitized-carbon monolithic column. Anal Chem 75:4904–4912 Liang C, Dai S, Guiochon G (2003) A graphitized-carbon monolithic column. Anal Chem 75:4904–4912
134.
go back to reference Fulvio PF, Mayes RT, Wang X, Mahurin SM, Bauer JC, Presser V, McDonough J, Gogotsi Y, Dai S (2011) “Brick-and-Mortar” self-assembly approach to graphitic mesoporous carbon nanocomposites. Adv Funct Mater 21:2208–2215 Fulvio PF, Mayes RT, Wang X, Mahurin SM, Bauer JC, Presser V, McDonough J, Gogotsi Y, Dai S (2011) “Brick-and-Mortar” self-assembly approach to graphitic mesoporous carbon nanocomposites. Adv Funct Mater 21:2208–2215
135.
go back to reference Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene. J Phys Chem C 112:15704–15707 Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene. J Phys Chem C 112:15704–15707
136.
go back to reference Srinivas G, Burress J, Yildirim T (2012) Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ Sci 5:6453–6459 Srinivas G, Burress J, Yildirim T (2012) Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ Sci 5:6453–6459
137.
go back to reference Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–5482 Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–5482
138.
go back to reference Zhao Y, Ding H, Zhong Q (2012) Preparation and characterization of aminated graphite oxide for CO2 capture. Appl Surf Sci 258:4301–4307 Zhao Y, Ding H, Zhong Q (2012) Preparation and characterization of aminated graphite oxide for CO2 capture. Appl Surf Sci 258:4301–4307
139.
go back to reference Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nature Nanotechnol 7:728–732 Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nature Nanotechnol 7:728–732
140.
go back to reference Carrillo I, Rangel E, Magaňa LF (2009) Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon 47:2752–2760 Carrillo I, Rangel E, Magaňa LF (2009) Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon 47:2752–2760
141.
go back to reference Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP (2012) Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem Mater 24:4531–4539 Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP (2012) Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem Mater 24:4531–4539
142.
go back to reference Zhou D, Liu Q, Cheng Q, Zhao Y, Cui Y, Wang T, Han B (2012) Graphene-manganese oxide hybrid porous material and its application in carbon dioxide adsorption. Chin Sci Bull 57:3059–3064 Zhou D, Liu Q, Cheng Q, Zhao Y, Cui Y, Wang T, Han B (2012) Graphene-manganese oxide hybrid porous material and its application in carbon dioxide adsorption. Chin Sci Bull 57:3059–3064
143.
go back to reference Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48:735–737 Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48:735–737
144.
go back to reference Mishra AK, Ramaprabhu S (2012) Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J Mater Chem 22:3708–3712 Mishra AK, Ramaprabhu S (2012) Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J Mater Chem 22:3708–3712
145.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
146.
go back to reference Nitze F, Hamad EA, Wågberg T (2011) Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon 49:1101–1107 Nitze F, Hamad EA, Wågberg T (2011) Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon 49:1101–1107
147.
go back to reference Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364 Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364
148.
go back to reference Yang KS, Edie DD, Lim DY, Kim YM, Choi YO (2003) Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 41:2039–2046 Yang KS, Edie DD, Lim DY, Kim YM, Choi YO (2003) Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 41:2039–2046
149.
go back to reference Kowalczyk P, Furmaniak S, Gauden PA, Terzyk AP (2010) Optimal single-walled carbon nanotube vessels for short-term reversible storage of carbon dioxide at ambient temperatures. J Phys Chem C 114:21465–21473 Kowalczyk P, Furmaniak S, Gauden PA, Terzyk AP (2010) Optimal single-walled carbon nanotube vessels for short-term reversible storage of carbon dioxide at ambient temperatures. J Phys Chem C 114:21465–21473
150.
go back to reference Mishra AK, Ramaprabhu S (2012) Polyaniline/multiwalled carbon nanotubes nanocomposite—an excellent reversible CO2 capture candidate. RSC Adv 2:1746–1750 Mishra AK, Ramaprabhu S (2012) Polyaniline/multiwalled carbon nanotubes nanocomposite—an excellent reversible CO2 capture candidate. RSC Adv 2:1746–1750
151.
go back to reference Ye Q, Jiang J, Wang C, Liu Y, Pan H, Shi Y (2012) Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26:2497–2504 Ye Q, Jiang J, Wang C, Liu Y, Pan H, Shi Y (2012) Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26:2497–2504
152.
go back to reference Su F, Lu C, Chen H-S (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27:8090–8098 Su F, Lu C, Chen H-S (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27:8090–8098
153.
go back to reference Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22:3050–3056 Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22:3050–3056
154.
go back to reference Dillon EP, Crouse CA, Barron AR (2008) Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano 2:156–164 Dillon EP, Crouse CA, Barron AR (2008) Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano 2:156–164
155.
go back to reference Liu H, Cooper VR, Dai S, Jiang D (2012) Windowed carbon nanotubes for efficient CO2 removal from natural gas. J Phys Chem Lett 3:3343–3347 Liu H, Cooper VR, Dai S, Jiang D (2012) Windowed carbon nanotubes for efficient CO2 removal from natural gas. J Phys Chem Lett 3:3343–3347
156.
go back to reference Shen W, Zhang S, He Y, Li J, Fan W (2011) Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J Mater Chem 21:14036–14040 Shen W, Zhang S, He Y, Li J, Fan W (2011) Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J Mater Chem 21:14036–14040
157.
go back to reference Asai M, Ohba T, Iwanaga T, Kanoh H, Endo M, Campos-Delgado J, Terrones M, Nakai K, Kaneko K (2011) Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. J Am Chem Soc 133:14880–14883 Asai M, Ohba T, Iwanaga T, Kanoh H, Endo M, Campos-Delgado J, Terrones M, Nakai K, Kaneko K (2011) Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. J Am Chem Soc 133:14880–14883
158.
go back to reference Mantzalis D, Asproulis N (2011) Enhanced carbon dioxide adsorption through carbon nanoscrolls. Phys Rev E84:066304 Mantzalis D, Asproulis N (2011) Enhanced carbon dioxide adsorption through carbon nanoscrolls. Phys Rev E84:066304
159.
go back to reference Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480 Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480
160.
go back to reference Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7:1108–1117 Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7:1108–1117
161.
go back to reference Presser V, McDonough J, Yeon S-H, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4:3059–3066 Presser V, McDonough J, Yeon S-H, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4:3059–3066
162.
go back to reference Qian D, Lei C, Wang E-M, Li W-C, Lu A-H (2013) A method for creating microporous carbons with excellent CO2 adsorption capacity and selectivity. ChemSusChem. doi: 10.1002/cssc.201300585 Qian D, Lei C, Wang E-M, Li W-C, Lu A-H (2013) A method for creating microporous carbons with excellent CO2 adsorption capacity and selectivity. ChemSusChem. doi: 10.​1002/​cssc.​201300585
163.
go back to reference Zhao Y, Zhao L, Yao KX, Yang Y, Zhang Q, Han Y (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22:19726–19731 Zhao Y, Zhao L, Yao KX, Yang Y, Zhang Q, Han Y (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22:19726–19731
164.
go back to reference Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285 Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285
165.
go back to reference Chen C, Kim J, Ahn W-S (2012) Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel 95:360–364 Chen C, Kim J, Ahn W-S (2012) Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel 95:360–364
166.
go back to reference Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem Mater 24:4725–4734 Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem Mater 24:4725–4734
167.
go back to reference Zhong M, Natesakhawat S, Baltrus JP, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T (2012) Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. Chem Commun 48:11516–11518 Zhong M, Natesakhawat S, Baltrus JP, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T (2012) Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. Chem Commun 48:11516–11518
168.
go back to reference Stohr B, Boehm HP, Schlogl R (1991) Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 29:707–720 Stohr B, Boehm HP, Schlogl R (1991) Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 29:707–720
169.
go back to reference Boehm HP, Mair G, Stoehr T, De Rincon AR, Tereczki B (1984) Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 63:1061–1063 Boehm HP, Mair G, Stoehr T, De Rincon AR, Tereczki B (1984) Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 63:1061–1063
170.
go back to reference Przepiórski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225:235–242 Przepiórski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225:235–242
171.
go back to reference Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ (2008) Surface modification of activated carbons for CO2 capture. Appl Surf Sci 254:7165–7172 Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ (2008) Surface modification of activated carbons for CO2 capture. Appl Surf Sci 254:7165–7172
172.
go back to reference Plaza MG, Rubiera F, Pis JJ, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Appl Surf Sci 256:6843–6849 Plaza MG, Rubiera F, Pis JJ, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Appl Surf Sci 256:6843–6849
173.
go back to reference Angeletti E, Canepa C, Martinetti G, Venturello P (1989) Amino groups immobilized on silica gel: an efficient and reusable heterogeneous catalyst for the Knoevenagel condensation. J Chem Soc 1:105–107 Angeletti E, Canepa C, Martinetti G, Venturello P (1989) Amino groups immobilized on silica gel: an efficient and reusable heterogeneous catalyst for the Knoevenagel condensation. J Chem Soc 1:105–107
174.
go back to reference Yue MB, Chun Y, Cao Y, Dong X, Zhu JH (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16:1717–1722 Yue MB, Chun Y, Cao Y, Dong X, Zhu JH (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16:1717–1722
175.
go back to reference Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y, Antonietti M, Titirici MM (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3:840–845 Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y, Antonietti M, Titirici MM (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3:840–845
176.
go back to reference Hwang CC, Jin Z, Lu W, Sun Z, Alemany LB, Lomeda JR, Tour JM (2011) In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration. ACS Appl Mater Interfaces 3:4782–4786 Hwang CC, Jin Z, Lu W, Sun Z, Alemany LB, Lomeda JR, Tour JM (2011) In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration. ACS Appl Mater Interfaces 3:4782–4786
177.
go back to reference Xia Y, Zhu Y, Tang Y (2012) Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon 50:5543–5553 Xia Y, Zhu Y, Tang Y (2012) Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon 50:5543–5553
178.
go back to reference Liu Y, Wilcox J (2012) Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol 46:1940–1947 Liu Y, Wilcox J (2012) Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol 46:1940–1947
179.
go back to reference Babarao R, Dai S, Jiang D (2012) Nitrogen-doped mesoporous carbon for carbon capture—a molecular simulation study. J Phys Chem C 116:7106–7110 Babarao R, Dai S, Jiang D (2012) Nitrogen-doped mesoporous carbon for carbon capture—a molecular simulation study. J Phys Chem C 116:7106–7110
Metadata
Title
Porous Carbons for Carbon Dioxide Capture
Authors
An-Hui Lu
Guang-Ping Hao
Xiang-Qian Zhang
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54646-4_2