Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Porous Silicon as Anode Material for Lithium-Ion Batteries

Authors : Madhuri Thakur, Roderick Pernites, Steve L. Sinsabaugh, Michael S. Wong, Sibani L. Biswal

Published in: Silicon-based Nanomaterials

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion batteries are ubiquitous in our modern society, powering everything from cell phones, laptops, and power tools.They are also powering emerging applications such as electric vehicles and used for on-grid power stabilization. Lithium-ion batteries are a significant and growing part of this market due to their high specific energy. The worldwide market for lithium-ion batteries is projected to reach more than USD 9 billion by 2015. While lithium-ion batteries are often selected for their high specific energy, the market is demanding yet higher performance, usually in terms of energy stored per unit mass of battery. Many groups have recently turned their attention toward developing a silicon-based anode material to increase lithium-ion battery density. Silicon continues to draw great interest as an anode for lithium-ion batteries due to its large specific capacity as compared to the conventional graphite. Despite this exciting property, its practical use has been limited due to a large volume change associated with the insertion and extraction of lithium, which oftentimes leads to cracking and pulverization of the anode, limiting its cycle life. To overcome this problem, significant research has been focused toward developing various silicon nanostructures to accommodate the severe volume expansion and contraction. The structuring of the silicon often involves costly processing steps, limiting its application in price sensitive commercial lithium-ion batteries. To achieve commercial viability, work is being pursued on silicon battery anode structures and processes with a special emphasis on the cost and environment. In this review book chapter, we will summarize recent development of a cost-effective electrochemically etched porous silicon as an anode material for lithium-ion batteries. Briefly, the new approach involves creating hierarchical micron-and nanometer-sized pores on the surface of micron-sized silicon particulates, which are combined with an excellent conductor binder.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shin, H.C., Corno, J.A., Gole, J.L., Liu, M.L.: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314–320 (2005)CrossRef Shin, H.C., Corno, J.A., Gole, J.L., Liu, M.L.: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314–320 (2005)CrossRef
2.
go back to reference Obrovac, M.N., Christensen, L., Le, D.B., Dahnb, J.R.: Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007)CrossRef Obrovac, M.N., Christensen, L., Le, D.B., Dahnb, J.R.: Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007)CrossRef
3.
go back to reference Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)CrossRef Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)CrossRef
4.
go back to reference Anani, A., Huggins, R.A.: Multinary alloy electrodes for solid-state batteries. 1. A phase-diagram approach for the selection and storage properties determination of candidate electrode materials. J. Power Sources 38, 351–362 (1992)CrossRef Anani, A., Huggins, R.A.: Multinary alloy electrodes for solid-state batteries. 1. A phase-diagram approach for the selection and storage properties determination of candidate electrode materials. J. Power Sources 38, 351–362 (1992)CrossRef
5.
go back to reference Chen, X., Gerasopoulos, K., Guo, J., et al.: Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4, 5366–5372 (2010)CrossRef Chen, X., Gerasopoulos, K., Guo, J., et al.: Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4, 5366–5372 (2010)CrossRef
6.
go back to reference Wen, C.J., Huggins, R.A.: Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 37, 271–278 (1981)CrossRef Wen, C.J., Huggins, R.A.: Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 37, 271–278 (1981)CrossRef
7.
go back to reference Yang, Y., McDowell, M.T., Jackson, A., et al.: New nanostructured \({\rm {Li}}_2\)S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010)CrossRef Yang, Y., McDowell, M.T., Jackson, A., et al.: New nanostructured \({\rm {Li}}_2\)S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010)CrossRef
8.
go back to reference Rong, J., Masarapu, C., Ni, J., Zhang, Z., Wei, B.: Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 4, 4683–4690 (2010)CrossRef Rong, J., Masarapu, C., Ni, J., Zhang, Z., Wei, B.: Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 4, 4683–4690 (2010)CrossRef
9.
go back to reference Liu, N., Hu, L., McDowell, M.T., Jackson, A., Cui, Y.: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011)CrossRef Liu, N., Hu, L., McDowell, M.T., Jackson, A., Cui, Y.: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011)CrossRef
10.
go back to reference Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007)CrossRef Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007)CrossRef
11.
go back to reference Kang, D.K., Corno, J.A., Gole, J.L., Shin, H.C.: Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc. 155, A276–A281 (2008) Kang, D.K., Corno, J.A., Gole, J.L., Shin, H.C.: Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc. 155, A276–A281 (2008)
12.
go back to reference Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31–35 (2008)CrossRef Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31–35 (2008)CrossRef
13.
go back to reference Qiu, M.C., Yang, L.W., Qi, X., Li, J., Zhong, J.X.: Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. ACS Appl. Mater. Interfaces 2, 3614–3618 (2010)CrossRef Qiu, M.C., Yang, L.W., Qi, X., Li, J., Zhong, J.X.: Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. ACS Appl. Mater. Interfaces 2, 3614–3618 (2010)CrossRef
14.
go back to reference Zhong, X., Qu, Y., Lin, Y.-C., Liao, L., Duan, X.: Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 3, 261–270 (2011)CrossRef Zhong, X., Qu, Y., Lin, Y.-C., Liao, L., Duan, X.: Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Interfaces 3, 261–270 (2011)CrossRef
15.
go back to reference Hatchard, T.D., Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)CrossRef Hatchard, T.D., Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)CrossRef
16.
go back to reference Baranchugov, V., Markevich, E., Pollak, E., Salitra, G., Aurbach, D.: Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 9, 796–800 (2007)CrossRef Baranchugov, V., Markevich, E., Pollak, E., Salitra, G., Aurbach, D.: Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 9, 796–800 (2007)CrossRef
17.
go back to reference Du, C., Gao, C., Yin, G., Chen, M., Wang, L.: Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy Environ. Sci. 4, 1037–1042 (2011)CrossRef Du, C., Gao, C., Yin, G., Chen, M., Wang, L.: Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy Environ. Sci. 4, 1037–1042 (2011)CrossRef
18.
go back to reference Magasinski, A., Zdyrko, B., Kovalenko, I., et al.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010)CrossRef Magasinski, A., Zdyrko, B., Kovalenko, I., et al.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010)CrossRef
19.
go back to reference Sailor, M.J.: Porous Silicon in Practice. Wiley-VCH, Weinheim (2012) Sailor, M.J.: Porous Silicon in Practice. Wiley-VCH, Weinheim (2012)
20.
go back to reference Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef
21.
go back to reference Lehmann, V., Gosele, U.: Porous silicon formation—a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRef Lehmann, V., Gosele, U.: Porous silicon formation—a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)CrossRef
22.
go back to reference Cullis, A.G., Canham, L.T., Calcott, P.D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)CrossRef Cullis, A.G., Canham, L.T., Calcott, P.D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)CrossRef
23.
go back to reference Stewart, M.P., Buriak, J.M.: Chemical and biological applications of porous silicon technology. Adv. Mater. 12, 859–869 (2000)CrossRef Stewart, M.P., Buriak, J.M.: Chemical and biological applications of porous silicon technology. Adv. Mater. 12, 859–869 (2000)CrossRef
24.
go back to reference Menna, P., Di Francia, G., Laferrara, V.: Porous silicon in solar-cells - a review and a description of its application as an ar coating. Sol. Energy Mater. Sol. Cells 37, 13–24 (1995)CrossRef Menna, P., Di Francia, G., Laferrara, V.: Porous silicon in solar-cells - a review and a description of its application as an ar coating. Sol. Energy Mater. Sol. Cells 37, 13–24 (1995)CrossRef
25.
go back to reference Wong, M.S., Knowles, W.V.: Surfactant-templated mesostructured materials:synthesis and compositional control,chap5. In: Lu, G.Q., Zhao, X.S.(eds.) Nanoporous Materials - Science and Engineering, 125–164. Imperial College Press, London (2004) Wong, M.S., Knowles, W.V.: Surfactant-templated mesostructured materials:synthesis and compositional control,chap5. In: Lu, G.Q., Zhao, X.S.(eds.) Nanoporous Materials - Science and Engineering, 125–164. Imperial College Press, London (2004)
26.
go back to reference Lehmann, V., Rönnebeck, S.: The physics of macropore formation in low-doped p-type silicon. J. Electrochem. Soc. 146, 2968–2975 (1999) Lehmann, V., Rönnebeck, S.: The physics of macropore formation in low-doped p-type silicon. J. Electrochem. Soc. 146, 2968–2975 (1999)
27.
go back to reference Houle, F.A.: Photochemical etching of silicon–the influence of photogenerated charge-carriers. Phys. Rev. B 39, 10120–10132 (1989) Houle, F.A.: Photochemical etching of silicon–the influence of photogenerated charge-carriers. Phys. Rev. B 39, 10120–10132 (1989)
28.
go back to reference Thakur, M., Isaacson, M., Sinsabaugh, S.L., Wong, M.S., Biswal, S.L.: Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426–432 (2012) Thakur, M., Isaacson, M., Sinsabaugh, S.L., Wong, M.S., Biswal, S.L.: Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426–432 (2012)
29.
go back to reference Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008) Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008)
30.
go back to reference Kim, H., Han, B., Choo, J., Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008) Kim, H., Han, B., Choo, J., Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008)
31.
go back to reference Bang, B.M., Lee, J.-I., Kim, H., et al.: High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Eng. Mater. 2, 878–883 (2012) Bang, B.M., Lee, J.-I., Kim, H., et al.: High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Eng. Mater. 2, 878–883 (2012)
32.
go back to reference Shen, P., Uesawa, N., Inasawa, S., Yamaguchi, Y.: Characterization of flowerlike silicon particles obtained from chemical etching: visible fluorescence and superhydrophobicity. Langmuir 26, 13522–13527 (2010) Shen, P., Uesawa, N., Inasawa, S., Yamaguchi, Y.: Characterization of flowerlike silicon particles obtained from chemical etching: visible fluorescence and superhydrophobicity. Langmuir 26, 13522–13527 (2010)
33.
go back to reference Halimaoui, A.: Porous Silicon Science and Technology. Springer, Berlin (1995) Halimaoui, A.: Porous Silicon Science and Technology. Springer, Berlin (1995)
34.
go back to reference Turner, D.R.: Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105, 402–408 (1958) Turner, D.R.: Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105, 402–408 (1958)
35.
go back to reference Theunissen, M.J.J.: Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J. Electrochem. Soc. 119, 351–360 (1972) Theunissen, M.J.J.: Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J. Electrochem. Soc. 119, 351–360 (1972)
36.
go back to reference Propst, E.K., Kohl, P.A.: The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J. Electrochem. Soc. 141, 1006–1013 (1994) Propst, E.K., Kohl, P.A.: The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J. Electrochem. Soc. 141, 1006–1013 (1994)
37.
go back to reference Ponomarev, E.A., Levy-Clement, C.: Macropore formation on p-type Si in fluoride containing organic electrolytes. Electrochem. Solid-State Lett. 1, 42–45 (1998)CrossRef Ponomarev, E.A., Levy-Clement, C.: Macropore formation on p-type Si in fluoride containing organic electrolytes. Electrochem. Solid-State Lett. 1, 42–45 (1998)CrossRef
38.
go back to reference Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F., Solomon, I.: Electrochemistry and photoluminescence of porous amorphous silicon. Thin Solid Films 297, 5–8 (1997)CrossRef Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F., Solomon, I.: Electrochemistry and photoluminescence of porous amorphous silicon. Thin Solid Films 297, 5–8 (1997)CrossRef
39.
go back to reference Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F.: Macropore formation in highly resistive p-type crystalline silicon. J. Electrochem. Soc. 145, 2958–2961 (1998)CrossRef Wehrspohn, R.B., Chazalviel, J.N., Ozanam, F.: Macropore formation in highly resistive p-type crystalline silicon. J. Electrochem. Soc. 145, 2958–2961 (1998)CrossRef
40.
go back to reference Steinert, M., Acker, J., Krause, M., Oswald, S., Wetzig, K.: Reactive species generated during wet chemical etching of silicon in HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. B 110, 11377–11382 (2006) Steinert, M., Acker, J., Krause, M., Oswald, S., Wetzig, K.: Reactive species generated during wet chemical etching of silicon in HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. B 110, 11377–11382 (2006)
41.
go back to reference Steinert, M., Acker, J., Oswald, S., Wetzig, K.: Study on the mechanism of silicon etching in \({\rm {HNO}}_3\)-rich HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. C 111, 2133–2140 (2007)CrossRef Steinert, M., Acker, J., Oswald, S., Wetzig, K.: Study on the mechanism of silicon etching in \({\rm {HNO}}_3\)-rich HF/\({\rm {HNO}}_3\) mixtures. J. Phys. Chem. C 111, 2133–2140 (2007)CrossRef
42.
go back to reference Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRef Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRef
43.
go back to reference Bsiesy, A.: In: Canham, L.T. (ed.) Properties of Porous Silicon, pp. 283–289. INSPEC, London (1997) Bsiesy, A.: In: Canham, L.T. (ed.) Properties of Porous Silicon, pp. 283–289. INSPEC, London (1997)
44.
go back to reference Iyer, S.S., Xie, Y.H.: Light-emission from silicon. Science 260, 40–46 (1993)CrossRef Iyer, S.S., Xie, Y.H.: Light-emission from silicon. Science 260, 40–46 (1993)CrossRef
45.
go back to reference Takasuka, E., Kamei, K.: Microstructure of porous silicon and its correlation with photoluminescence. Appl. Phys. Lett. 65, 484–486 (1994)CrossRef Takasuka, E., Kamei, K.: Microstructure of porous silicon and its correlation with photoluminescence. Appl. Phys. Lett. 65, 484–486 (1994)CrossRef
46.
go back to reference Peng, K.Q., Xu, Y., Wu, Y., et al.: Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005)CrossRef Peng, K.Q., Xu, Y., Wu, Y., et al.: Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005)CrossRef
47.
go back to reference Garnett, E.C., Yang, P.: Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008)CrossRef Garnett, E.C., Yang, P.: Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008)CrossRef
49.
go back to reference Wu, E.C., Park, J.-H., Park, J., et al.: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401–2409 (2008)CrossRef Wu, E.C., Park, J.-H., Park, J., et al.: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401–2409 (2008)CrossRef
50.
go back to reference Harper, J., Sailor, M.J.: Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal. Chem. 68, 3713–3717 (1996) Harper, J., Sailor, M.J.: Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal. Chem. 68, 3713–3717 (1996)
51.
go back to reference Patolsky, F., Zheng, G.F., Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260–4269 (2006) Patolsky, F., Zheng, G.F., Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260–4269 (2006)
52.
go back to reference Tasciotti, E., Liu, X., Bhavane, R., et al.: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151–157 (2008)CrossRef Tasciotti, E., Liu, X., Bhavane, R., et al.: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151–157 (2008)CrossRef
53.
go back to reference Park, J.-H., Gu, L., von Maltzahn, G., et al.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009)CrossRef Park, J.-H., Gu, L., von Maltzahn, G., et al.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009)CrossRef
54.
go back to reference Lee, C., Kim, H., Hong, C., et al.: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J. Mater. Chem. 18, 4790–4795 (2008)CrossRef Lee, C., Kim, H., Hong, C., et al.: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J. Mater. Chem. 18, 4790–4795 (2008)CrossRef
55.
go back to reference De Stefano, L., Rea, I., Giardina, P., Armenante, A., Rendina, I.: Protein-modified porous silicon nanostructures. Adv. Mater. 20, 1529–1533 (2008)CrossRef De Stefano, L., Rea, I., Giardina, P., Armenante, A., Rendina, I.: Protein-modified porous silicon nanostructures. Adv. Mater. 20, 1529–1533 (2008)CrossRef
56.
go back to reference Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995)CrossRef Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995)CrossRef
57.
go back to reference Shin, H.C., Shi, Z., Gole, J.L., Liu, M.L.: Porous silicon based electrodes for lithium batteries. In: Wachman, E., Swider-Lyons, K., Carolan, M.F., Garzon, F.H., Liu, M., Stetter, J.R. (eds.) Solid State Ionic Devices III, PV 2002-26, 2003, pp. 518–525. The Electrochemical Society, Pennington, NJ (2003) Shin, H.C., Shi, Z., Gole, J.L., Liu, M.L.: Porous silicon based electrodes for lithium batteries. In: Wachman, E., Swider-Lyons, K., Carolan, M.F., Garzon, F.H., Liu, M., Stetter, J.R. (eds.) Solid State Ionic Devices III, PV 2002-26, 2003, pp. 518–525. The Electrochemical Society, Pennington, NJ (2003)
58.
go back to reference Gole, J.L., Seals, L.T., Lillehei, P.T.: Patterned metallization of porous silicon from electroless solution for direct electrical contact. J. Electrochem. Soc. 147, 3785–3789 (2000)CrossRef Gole, J.L., Seals, L.T., Lillehei, P.T.: Patterned metallization of porous silicon from electroless solution for direct electrical contact. J. Electrochem. Soc. 147, 3785–3789 (2000)CrossRef
59.
go back to reference Yu, Y., Gu, L., Zhu, C.B., et al.: Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010)CrossRef Yu, Y., Gu, L., Zhu, C.B., et al.: Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010)CrossRef
60.
go back to reference Halimaoui, A.: Porous silicon formation by anodisation. In: Canhan, L. (ed.) Properties of Porous Silicon, p. 18. The Institution of Electrical Engineering, London (1997) Halimaoui, A.: Porous silicon formation by anodisation. In: Canhan, L. (ed.) Properties of Porous Silicon, p. 18. The Institution of Electrical Engineering, London (1997)
61.
go back to reference Takamura, T., Sumiya, K., Suzuki, J., Yamada, C., Sekine, K.: Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J. Power Sources 81, 368–372 (1999)CrossRef Takamura, T., Sumiya, K., Suzuki, J., Yamada, C., Sekine, K.: Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J. Power Sources 81, 368–372 (1999)CrossRef
62.
go back to reference Astrova, E.V., Fedulova, G.V., Smirnova, I.A., et al.: Porous silicon based negative electrodes for lithium ion batteries. Tech. Phys. Let 37, 731–734 (2011)CrossRef Astrova, E.V., Fedulova, G.V., Smirnova, I.A., et al.: Porous silicon based negative electrodes for lithium ion batteries. Tech. Phys. Let 37, 731–734 (2011)CrossRef
63.
go back to reference Thakur, M., Pernites, R.B., Nitta, N., et al.: Freestanding macroporous silicon and pyrolyzed polyacrylonitrile composite as an anode for lithium ion batteries. Chem. Mater. 24, 2998–3003 (2012)CrossRef Thakur, M., Pernites, R.B., Nitta, N., et al.: Freestanding macroporous silicon and pyrolyzed polyacrylonitrile composite as an anode for lithium ion batteries. Chem. Mater. 24, 2998–3003 (2012)CrossRef
64.
go back to reference Solanki, C.S., Bilyalov, R.R., Bender, H., Poortmans, J.: New approach for the formation and separation of a thin porous silicon layer. Phys. Status Solidi A 182, 97–101 (2000)CrossRef Solanki, C.S., Bilyalov, R.R., Bender, H., Poortmans, J.: New approach for the formation and separation of a thin porous silicon layer. Phys. Status Solidi A 182, 97–101 (2000)CrossRef
65.
go back to reference Solanki, C.S., Bilyalov, R.R., Poortmans, J., et al.: Self-standing porous silicon films by one-step anodizing. J. Electrochem. Soc. 151, C307–C314 (2004)CrossRef Solanki, C.S., Bilyalov, R.R., Poortmans, J., et al.: Self-standing porous silicon films by one-step anodizing. J. Electrochem. Soc. 151, C307–C314 (2004)CrossRef
66.
go back to reference Xue, J.S., Dahn, J.R.: Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc. 142, 3668–3677 (1995)CrossRef Xue, J.S., Dahn, J.R.: Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc. 142, 3668–3677 (1995)CrossRef
67.
go back to reference Kim, C., Yang, K.S., Kim, Y.J., Endo, M.: Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons. J. Mater. Sci. 38, 2987–2991 (2003)CrossRef Kim, C., Yang, K.S., Kim, Y.J., Endo, M.: Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons. J. Mater. Sci. 38, 2987–2991 (2003)CrossRef
68.
go back to reference Yen, Y.-C., Chao, S.-C., Wu, H.-C., Wu, N.-L.: Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95–A102 (2009)CrossRef Yen, Y.-C., Chao, S.-C., Wu, H.-C., Wu, N.-L.: Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J. Electrochem. Soc. 156, A95–A102 (2009)CrossRef
69.
go back to reference Pospisil, J., Samoc, M., Zieba, J.: Third-order nonlinear optical properties of a ladder polymer obtained by pyrolysis of polyacrylonitrile. Eur. Polym. J. 34, 899–904 (1998)CrossRef Pospisil, J., Samoc, M., Zieba, J.: Third-order nonlinear optical properties of a ladder polymer obtained by pyrolysis of polyacrylonitrile. Eur. Polym. J. 34, 899–904 (1998)CrossRef
70.
go back to reference Thakur, M., Sinsabaugh, S.L., Isaacson, M., Wong, M.S., Biswal, S.L.: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2(795), (2012)(Accepted). doi:10.1038/srep00795 Thakur, M., Sinsabaugh, S.L., Isaacson, M., Wong, M.S., Biswal, S.L.: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2(795), (2012)(Accepted). doi:10.​1038/​srep00795
71.
go back to reference Cui, L.-F., Hu, L., Wu, H., Choi, J.W., Cui, Y.: Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J. Electrochem. Soc. 158, A592–A596 (2011)CrossRef Cui, L.-F., Hu, L., Wu, H., Choi, J.W., Cui, Y.: Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J. Electrochem. Soc. 158, A592–A596 (2011)CrossRef
Metadata
Title
Porous Silicon as Anode Material for Lithium-Ion Batteries
Authors
Madhuri Thakur
Roderick Pernites
Steve L. Sinsabaugh
Michael S. Wong
Sibani L. Biswal
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-8169-0_1

Premium Partners