Skip to main content
Top
Published in: Journal of Materials Science 16/2016

19-05-2016 | Original Paper

Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys

Authors: Meng Liu, Benedikt Klobes, John Banhart

Published in: Journal of Materials Science | Issue 16/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The clustering kinetics in quenched pure Al, binary Al–Mg and binary Al–Si alloys were studied by positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) during natural ageing (NA). Shortly after quenching, positrons annihilate either in the bulk material or in vacancy-type defects such as mono-vacancies (in Al) and vacancy–solute complexes (in Al–Mg and Al–Si alloys). Upon NA, vacancy clusters of various sizes and number densities are formed. In Al, such clusters contain typically 3 vacancies. In Al–Mg and Al–Si alloys, complexes containing various vacancies and also solute atoms are formed. The presence of shallow positron traps was detected in temperature-dependent positron lifetime experiments. They were identified as quenched-in dislocations rather than Mg or Si clusters as no solute clustering signal during NA was observed in DSC runs of the binary Al–Mg and Al–Si alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that positron affinities are usually calculated for extended bulk materials (or with respect to the interface of two bulk materials). Thus, positron affinities calculated in this way do not necessarily correspond to positron affinities of single atoms inside a host matrix.
 
Literature
1.
go back to reference Hirsch PB, Silcox J, Smallman RE, Westmacott KH (1958) Dislocation loops in quenched aluminium. Philos Mag 3:897–908CrossRef Hirsch PB, Silcox J, Smallman RE, Westmacott KH (1958) Dislocation loops in quenched aluminium. Philos Mag 3:897–908CrossRef
2.
go back to reference Luna CR, Macchi C, Juan A, Somoza A (2013) Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J Phys Conf Ser 443:012019CrossRef Luna CR, Macchi C, Juan A, Somoza A (2013) Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J Phys Conf Ser 443:012019CrossRef
3.
go back to reference Fischer FD, Svoboda J, Appel F, Kozeschnik E (2011) Modeling of excess vacancy annihilation at different types of sinks. Acta Mater 59:3463–3472CrossRef Fischer FD, Svoboda J, Appel F, Kozeschnik E (2011) Modeling of excess vacancy annihilation at different types of sinks. Acta Mater 59:3463–3472CrossRef
4.
go back to reference Panseri C, Federighi T (1958) Isochronal annealing of vacancies in aluminium. Philos Mag 3:1223–1240CrossRef Panseri C, Federighi T (1958) Isochronal annealing of vacancies in aluminium. Philos Mag 3:1223–1240CrossRef
5.
go back to reference Panseri C, Gatto F, Federighi T (1958) Interaction between solute magnesium atoms and vacancies in aluminium. Acta Metall 6:198–204CrossRef Panseri C, Gatto F, Federighi T (1958) Interaction between solute magnesium atoms and vacancies in aluminium. Acta Metall 6:198–204CrossRef
6.
go back to reference Ozawa E, Kimura H (1970) Excess vacancies and nucleation of precipitates in aluminum-silicon alloys. Acta Metall 18:995–1004CrossRef Ozawa E, Kimura H (1970) Excess vacancies and nucleation of precipitates in aluminum-silicon alloys. Acta Metall 18:995–1004CrossRef
7.
go back to reference Banhart J, Chang CST, Liang ZQ, Wanderka N, Lay MDH, Hill AJ (2010) Natural aging in Al–Mg–Si alloys–a process of unexpected complexity. Adv Eng Mater 12:559–571CrossRef Banhart J, Chang CST, Liang ZQ, Wanderka N, Lay MDH, Hill AJ (2010) Natural aging in Al–Mg–Si alloys–a process of unexpected complexity. Adv Eng Mater 12:559–571CrossRef
8.
go back to reference Panseri C, Federighi T (1966) A resistometric study of precipitation in an aluminium-1.4 percent Mg2Si alloy. J I Met 94:99–197 Panseri C, Federighi T (1966) A resistometric study of precipitation in an aluminium-1.4 percent Mg2Si alloy. J I Met 94:99–197
9.
go back to reference Banhart J, Lay MDH, Chang CST, Hill AJ (2011) Kinetics of natural aging in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. Phys Rev B 83:014101CrossRef Banhart J, Lay MDH, Chang CST, Hill AJ (2011) Kinetics of natural aging in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. Phys Rev B 83:014101CrossRef
10.
go back to reference Pashley DW, Rhodes JW, Sendorek A (1966) Delayed ageing in aluminium-magnesium-silicon alloys: effect on structure and mechnical properties. J I Met 94:41–49 Pashley DW, Rhodes JW, Sendorek A (1966) Delayed ageing in aluminium-magnesium-silicon alloys: effect on structure and mechnical properties. J I Met 94:41–49
11.
go back to reference Liu M (2014) Clustering kinetics in Al–Mg–Si alloys investigated by positron annihilation techniques. PhD Dissertation, Technische Universität Berlin Liu M (2014) Clustering kinetics in Al–Mg–Si alloys investigated by positron annihilation techniques. PhD Dissertation, Technische Universität Berlin
12.
go back to reference Lay MDH, Zurob HS, Hutchinson CR, Bastow TJ, Hill AJ (2012) Vacancy behavior and solute cluster growth during natural aging of an Al–Mg–Si alloy. Metall Mater Trans A 43A:4507–4513CrossRef Lay MDH, Zurob HS, Hutchinson CR, Bastow TJ, Hill AJ (2012) Vacancy behavior and solute cluster growth during natural aging of an Al–Mg–Si alloy. Metall Mater Trans A 43A:4507–4513CrossRef
13.
go back to reference De Geuser F, Lefebvre W, Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Phil Mag Lett 86:227–234CrossRef De Geuser F, Lefebvre W, Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Phil Mag Lett 86:227–234CrossRef
14.
go back to reference Murayama M, Hono K, Saga M, Kikuchi M (1998) Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys. Mat Sci Eng A 250:127–132CrossRef Murayama M, Hono K, Saga M, Kikuchi M (1998) Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys. Mat Sci Eng A 250:127–132CrossRef
15.
go back to reference Klobes B, Maier K, Staab TEM (2015) Early stage ageing effects and shallow positron traps in Al–Mg–Si alloys. Philos Mag 95:1414–1424CrossRef Klobes B, Maier K, Staab TEM (2015) Early stage ageing effects and shallow positron traps in Al–Mg–Si alloys. Philos Mag 95:1414–1424CrossRef
16.
go back to reference Liu M, Čižek J, Chang CST, Banhart J (2015) Early stages of solute clustering in an Al–Mg–Si alloy. Acta Mater 91:355–364CrossRef Liu M, Čižek J, Chang CST, Banhart J (2015) Early stages of solute clustering in an Al–Mg–Si alloy. Acta Mater 91:355–364CrossRef
17.
go back to reference Liu M, Yan Y, Liang ZQ, Chang CST, Banhart J (2012) Influence of Mg and Si atoms on the cluster formation process in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. In: Weiland H, Rollett AD, Cassada WA (eds), Proceedings of the 13th International Conference on Aluminium Alloys (ICAA13), Pittsburgh, pp 1131–1137 Liu M, Yan Y, Liang ZQ, Chang CST, Banhart J (2012) Influence of Mg and Si atoms on the cluster formation process in Al–Mg–Si alloys studied by positron annihilation lifetime spectroscopy. In: Weiland H, Rollett AD, Cassada WA (eds), Proceedings of the 13th International Conference on Aluminium Alloys (ICAA13), Pittsburgh, pp 1131–1137
18.
go back to reference Lengeler B (1976) Quenching of high-quality gold single-crystals. Philos Mag 34:259–264CrossRef Lengeler B (1976) Quenching of high-quality gold single-crystals. Philos Mag 34:259–264CrossRef
19.
go back to reference Dannefaer A (1981) On the effect of backscattering of γ quanta and statistics in positron-annihilation lifetime measurements. Appl Phys A 26:255–259CrossRef Dannefaer A (1981) On the effect of backscattering of γ quanta and statistics in positron-annihilation lifetime measurements. Appl Phys A 26:255–259CrossRef
20.
go back to reference Dorikens-Vanpraet L, Segers D, Dorikens M (1980) The influence of geometry on the resolution of a positron annihilation lifetime spectrometer. Appl Phys 23:149–152CrossRef Dorikens-Vanpraet L, Segers D, Dorikens M (1980) The influence of geometry on the resolution of a positron annihilation lifetime spectrometer. Appl Phys 23:149–152CrossRef
21.
go back to reference Banhart J, Liu M, Yan Y et al (2012) Study of ageing in Al–Mg–Si alloys by positron annihilation spectroscopy. Physica B 407:2689–2696CrossRef Banhart J, Liu M, Yan Y et al (2012) Study of ageing in Al–Mg–Si alloys by positron annihilation spectroscopy. Physica B 407:2689–2696CrossRef
22.
go back to reference Leighly HP (2006) Positron annihilation of defects in metals and alloys. In: Mackenzie DS, Totten GE (eds) Analytical characterization of aluminum, steel, and superalloys. Taylor & Francis, Boca Raton, pp 661–676 Leighly HP (2006) Positron annihilation of defects in metals and alloys. In: Mackenzie DS, Totten GE (eds) Analytical characterization of aluminum, steel, and superalloys. Taylor & Francis, Boca Raton, pp 661–676
23.
go back to reference Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instru Meth Phys Res A 374:235–244CrossRef Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instru Meth Phys Res A 374:235–244CrossRef
24.
go back to reference Gottstein G (1998) Physikalische Grundlagen der Materialkunde. In: Kristallbaufehler. Springer, Berlin, pp 67–70 Gottstein G (1998) Physikalische Grundlagen der Materialkunde. In: Kristallbaufehler. Springer, Berlin, pp 67–70
25.
go back to reference Carling KM, Wahnström G, Mattsson TR, Sandberg N, Grimvall G (2003) Vacancy concentration in Al from combined first-principles and model potential calculations. Phys Rev B 67:054101CrossRef Carling KM, Wahnström G, Mattsson TR, Sandberg N, Grimvall G (2003) Vacancy concentration in Al from combined first-principles and model potential calculations. Phys Rev B 67:054101CrossRef
26.
go back to reference Ehrhart P, Jung P, Schultz H, Ullmaier H (1991) Landolt-Börnstein, New series III/25. In: Ullmaier H (ed) Atomic defects in metals · Al. Springer, Berlin, pp 211–223CrossRef Ehrhart P, Jung P, Schultz H, Ullmaier H (1991) Landolt-Börnstein, New series III/25. In: Ullmaier H (ed) Atomic defects in metals · Al. Springer, Berlin, pp 211–223CrossRef
27.
go back to reference Seeger A (1973) Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques. J Phys F 3:248–294CrossRef Seeger A (1973) Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques. J Phys F 3:248–294CrossRef
28.
go back to reference Staab TEM, Zschech E, Krause-Rehberg R (2000) Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy. J Mater Sci 35:4667–4672CrossRef Staab TEM, Zschech E, Krause-Rehberg R (2000) Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy. J Mater Sci 35:4667–4672CrossRef
29.
go back to reference Puska M, Nieminen RM (1983) Defect spectroscopy with positrons: a general calculational method. J Phys F Met Phys 13:333–346CrossRef Puska M, Nieminen RM (1983) Defect spectroscopy with positrons: a general calculational method. J Phys F Met Phys 13:333–346CrossRef
30.
go back to reference Schaefer HE (1987) Investigation of thermal-equilibrium vacancies in metals by positron annihilation. Phys Status Solidi A 102:47–65CrossRef Schaefer HE (1987) Investigation of thermal-equilibrium vacancies in metals by positron annihilation. Phys Status Solidi A 102:47–65CrossRef
31.
go back to reference Gavini V, Bhattacharya K, Ortiz M (2007) Vacancy clustering and prismatic dislocation loop formation in aluminum. Phys Rev B 76:180101CrossRef Gavini V, Bhattacharya K, Ortiz M (2007) Vacancy clustering and prismatic dislocation loop formation in aluminum. Phys Rev B 76:180101CrossRef
32.
go back to reference Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Springer, HeidelbergCrossRef Krause-Rehberg R, Leipner HS (1999) Positron annihilation in semiconductors. Springer, HeidelbergCrossRef
33.
go back to reference Nieminen RM, Laakkonen J (1979) Positron trapping rate into vacancy clusters. Appl Phys 20:181–184CrossRef Nieminen RM, Laakkonen J (1979) Positron trapping rate into vacancy clusters. Appl Phys 20:181–184CrossRef
34.
go back to reference Royset J, Stene T, Seater JA, Reiso O (2006) The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si alloys, Aluminium Alloys 2006, Pts 1 and 2 519–521: 239–244 Royset J, Stene T, Seater JA, Reiso O (2006) The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si alloys, Aluminium Alloys 2006, Pts 1 and 2 519–521: 239–244
35.
go back to reference Calloni A, Dupasquier A, Ferragut R et al (2005) Positron localization effects on the Doppler broadening of the annihilation line: aluminum as a case study. Phys Rev B 72:054112CrossRef Calloni A, Dupasquier A, Ferragut R et al (2005) Positron localization effects on the Doppler broadening of the annihilation line: aluminum as a case study. Phys Rev B 72:054112CrossRef
36.
go back to reference Dlubek G, Gerber W, Vehanen A, Ylikauppila J (1980) A positron annihilation study of vacancies and their clusters in diluted aluminum alloys quenched or neutron-irradiated. Cryst Res Technol 15:1409–1413 Dlubek G, Gerber W, Vehanen A, Ylikauppila J (1980) A positron annihilation study of vacancies and their clusters in diluted aluminum alloys quenched or neutron-irradiated. Cryst Res Technol 15:1409–1413
37.
go back to reference Dlubek G, Brummer O, Moser B (1981) A positron annihilation study of quenched-in defects in diluted Al–Mg alloys. Phys Status Solidi A 63:K115–K118CrossRef Dlubek G, Brummer O, Moser B (1981) A positron annihilation study of quenched-in defects in diluted Al–Mg alloys. Phys Status Solidi A 63:K115–K118CrossRef
38.
go back to reference Stott MJ, Kubica P (1975) New approach to the positron distribution in metals and alloys. Phys Rev B 11:1–10CrossRef Stott MJ, Kubica P (1975) New approach to the positron distribution in metals and alloys. Phys Rev B 11:1–10CrossRef
39.
go back to reference Puska MJ, Nieminen RM (1989) Positron affinities for elemental metals. J Phys Condens Matter 1:6081–6093CrossRef Puska MJ, Nieminen RM (1989) Positron affinities for elemental metals. J Phys Condens Matter 1:6081–6093CrossRef
40.
go back to reference Lang P, Shan YV, Kozeschnik E (2014) The life-time of structural vacancies in the presence of solute trapping. Mater Sci Forum 794–796:963–970CrossRef Lang P, Shan YV, Kozeschnik E (2014) The life-time of structural vacancies in the presence of solute trapping. Mater Sci Forum 794–796:963–970CrossRef
41.
go back to reference Corbel C, Gupta RP (1981) Positron lifetime in vacancy-impurity complexes. J Phys Lett 42:547–550CrossRef Corbel C, Gupta RP (1981) Positron lifetime in vacancy-impurity complexes. J Phys Lett 42:547–550CrossRef
42.
go back to reference Melikhova O, Kuriplach J, Čižek J, Prochazka I (2006) Vacancy-solute complexes in aluminum. Appl Surf Sci 252:3285–3289CrossRef Melikhova O, Kuriplach J, Čižek J, Prochazka I (2006) Vacancy-solute complexes in aluminum. Appl Surf Sci 252:3285–3289CrossRef
43.
go back to reference Segers D, van Mourik P, van Wijingaarden MH, Rao BM (1984) Precipitation of silicon in a solid quenched aluminium–silicon (1.3 at%) alloy studied by positron annihilation. Physica Status Solidi A 81:209–216CrossRef Segers D, van Mourik P, van Wijingaarden MH, Rao BM (1984) Precipitation of silicon in a solid quenched aluminium–silicon (1.3 at%) alloy studied by positron annihilation. Physica Status Solidi A 81:209–216CrossRef
44.
go back to reference Liang ZQ, Chang CST, Abromeit C, Banhart J, Hirsch J (2012) The kinetics of clustering in Al–Mg–Si alloys studied by Monte Carlo simulation. Int J Mater Res 103:980–986CrossRef Liang ZQ, Chang CST, Abromeit C, Banhart J, Hirsch J (2012) The kinetics of clustering in Al–Mg–Si alloys studied by Monte Carlo simulation. Int J Mater Res 103:980–986CrossRef
45.
go back to reference Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion coefficients. Acta Mater 57:4102–4108CrossRef Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion coefficients. Acta Mater 57:4102–4108CrossRef
46.
go back to reference Wert C, Zener C (1949) Interstitial atomic diffusion coefficients. Phys Rev 76:1169–1175CrossRef Wert C, Zener C (1949) Interstitial atomic diffusion coefficients. Phys Rev 76:1169–1175CrossRef
47.
go back to reference Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127CrossRef Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121–127CrossRef
48.
go back to reference Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the embedded atom method. J Mater Res 4:102–112CrossRef Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the embedded atom method. J Mater Res 4:102–112CrossRef
49.
go back to reference Hirosawa S, Nakamura F, Sato T (2007) First-principles calculation of interaction energies between solutes and/or vacancies for predicting atomistic behaviors of microalloying elements in aluminum alloys. Mater Sci Forum 561–565:283–286CrossRef Hirosawa S, Nakamura F, Sato T (2007) First-principles calculation of interaction energies between solutes and/or vacancies for predicting atomistic behaviors of microalloying elements in aluminum alloys. Mater Sci Forum 561–565:283–286CrossRef
50.
go back to reference Hoshino T, Zeller R, Dederichs PH (1996) Local-density-functional calculations for defect interactions in Al. Phys Rev B 53:8971–8974CrossRef Hoshino T, Zeller R, Dederichs PH (1996) Local-density-functional calculations for defect interactions in Al. Phys Rev B 53:8971–8974CrossRef
51.
go back to reference Dlubek G, Krause R, Brummer O, Plazaola F (1986) Study of formation and reversion of Guinier-Preston zones in Al-4.5at-percent-Zn-Xat-percent-Mg alloys by positrons. J Mater Sci 21:853–858CrossRef Dlubek G, Krause R, Brummer O, Plazaola F (1986) Study of formation and reversion of Guinier-Preston zones in Al-4.5at-percent-Zn-Xat-percent-Mg alloys by positrons. J Mater Sci 21:853–858CrossRef
52.
go back to reference Krause R, Dlubek G, Brummer O, Skladnikiewitz S, Daut H (1985) Nucleation and precipitation in an Al–Si(1 at-percent) alloy investigated by positron annihilation. Cryst Res Technol 20:267–269CrossRef Krause R, Dlubek G, Brummer O, Skladnikiewitz S, Daut H (1985) Nucleation and precipitation in an Al–Si(1 at-percent) alloy investigated by positron annihilation. Cryst Res Technol 20:267–269CrossRef
53.
go back to reference Somoza A, Petkov MP, Lynn KG (2002) Stability of vacancies during solute clustering in Al–Cu based alloys. Phys Rev B 65:094107CrossRef Somoza A, Petkov MP, Lynn KG (2002) Stability of vacancies during solute clustering in Al–Cu based alloys. Phys Rev B 65:094107CrossRef
54.
go back to reference Zou B, Chen ZQ, Liu CH, Chen JH (2014) Vacancy-Mg complexes and their evolution in early stages of aging of Al–Mg based alloys. Appl Surf Sci 298:50–55CrossRef Zou B, Chen ZQ, Liu CH, Chen JH (2014) Vacancy-Mg complexes and their evolution in early stages of aging of Al–Mg based alloys. Appl Surf Sci 298:50–55CrossRef
55.
go back to reference Dlubek G, Brummer O, Hautojarvi P (1986) A positron study of precipitation phenomena in Al–Ge and Al–Si alloys. Acta Metall 34:661–667CrossRef Dlubek G, Brummer O, Hautojarvi P (1986) A positron study of precipitation phenomena in Al–Ge and Al–Si alloys. Acta Metall 34:661–667CrossRef
56.
go back to reference Pagh B, Hansen HE, Nielsen B, Trumpy G, Petersen K (1984) Temperature dependence of positron annihilation parameters in neutron irradiated molybdenum. Appl Phys A 33:255–263CrossRef Pagh B, Hansen HE, Nielsen B, Trumpy G, Petersen K (1984) Temperature dependence of positron annihilation parameters in neutron irradiated molybdenum. Appl Phys A 33:255–263CrossRef
57.
go back to reference Saarinen K, Hautojarvi P, Vehanen A, Krause R, Dlubek G (1989) Shallow positron traps in GaAs. Phys Rev B 39:5287–5296CrossRef Saarinen K, Hautojarvi P, Vehanen A, Krause R, Dlubek G (1989) Shallow positron traps in GaAs. Phys Rev B 39:5287–5296CrossRef
58.
go back to reference Gupta AK, Lloyd DJ (1999) Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metall Mater Trans A 30:879–884CrossRef Gupta AK, Lloyd DJ (1999) Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metall Mater Trans A 30:879–884CrossRef
59.
go back to reference Bouchear M, Hamana D, Laoui T (1996) GP zones and precipitate morphology in aged Al–Mg alloys. Phil Mag A 73:1733–1740CrossRef Bouchear M, Hamana D, Laoui T (1996) GP zones and precipitate morphology in aged Al–Mg alloys. Phil Mag A 73:1733–1740CrossRef
60.
go back to reference Nozato R, Ishihara S (1980) Calorimetric study of precipitation process in Al–Mg alloys. T Jpn I Met 21:580–588CrossRef Nozato R, Ishihara S (1980) Calorimetric study of precipitation process in Al–Mg alloys. T Jpn I Met 21:580–588CrossRef
61.
go back to reference Roth M, Raynal JM (1974) Small-angle neutron scattering by Guinier-Preston zones in Al–Mg alloys. J Appl Crystallogr 7:219–221CrossRef Roth M, Raynal JM (1974) Small-angle neutron scattering by Guinier-Preston zones in Al–Mg alloys. J Appl Crystallogr 7:219–221CrossRef
62.
go back to reference Thomas G (1959) Quenching defects in binary aluminium alloys. Philos Mag 4:1213–1228CrossRef Thomas G (1959) Quenching defects in binary aluminium alloys. Philos Mag 4:1213–1228CrossRef
63.
go back to reference Smedskjaer LC, Manninen M, Fluss MJ (1980) An alternative interpretation of positron annihilation in dislocations. J Phys F Met Phys 10:2237CrossRef Smedskjaer LC, Manninen M, Fluss MJ (1980) An alternative interpretation of positron annihilation in dislocations. J Phys F Met Phys 10:2237CrossRef
64.
go back to reference Dupasquier A, Romero R, Somoza A (1993) Positron trapping at grain boundaries. Phys Rev B 48:9235CrossRef Dupasquier A, Romero R, Somoza A (1993) Positron trapping at grain boundaries. Phys Rev B 48:9235CrossRef
65.
go back to reference Hashimoto E, Kino T (1991) Temperature dependence of positron trapping to dislocations in aluminum. J Phys Soc Jpn 60:3167CrossRef Hashimoto E, Kino T (1991) Temperature dependence of positron trapping to dislocations in aluminum. J Phys Soc Jpn 60:3167CrossRef
66.
go back to reference Westmacott KH, Hull D, Barnes RS, Smallman RE (1959) Dislocation sources in quenched aluminium-based alloys. Philos Mag 4:1089–1092CrossRef Westmacott KH, Hull D, Barnes RS, Smallman RE (1959) Dislocation sources in quenched aluminium-based alloys. Philos Mag 4:1089–1092CrossRef
67.
go back to reference Del Rio J, De Diego N, Plazaola F (1998) Temperature dependence of positron trapping at defects in an Al–Li alloy. J Phys Condens Matter 10:5327–5333CrossRef Del Rio J, De Diego N, Plazaola F (1998) Temperature dependence of positron trapping at defects in an Al–Li alloy. J Phys Condens Matter 10:5327–5333CrossRef
68.
go back to reference Kiritani M (1964) Formation of voids and dislocation loops in quenched aluminum. J Phys Soc Jpn 19:618–631CrossRef Kiritani M (1964) Formation of voids and dislocation loops in quenched aluminum. J Phys Soc Jpn 19:618–631CrossRef
69.
go back to reference Starink MJ, Zahra AM (1998) Kinetics of isothermal and non-isothermal precipitation in an Al-6 at% Si alloy. Phil Mag A 77:187–199CrossRef Starink MJ, Zahra AM (1998) Kinetics of isothermal and non-isothermal precipitation in an Al-6 at% Si alloy. Phil Mag A 77:187–199CrossRef
Metadata
Title
Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys
Authors
Meng Liu
Benedikt Klobes
John Banhart
Publication date
19-05-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0057-7

Other articles of this Issue 16/2016

Journal of Materials Science 16/2016 Go to the issue

Premium Partners