Skip to main content
Top

2020 | OriginalPaper | Chapter

Possibility of Using Liquid-Metals for Gas Turbine Cooling System

Authors : Oksana Lytvynenko, Oleksandr Tarasov, Iryna Mykhailova, Olena Avdieieva

Published in: Advances in Design, Simulation and Manufacturing III

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of using heat pipes to cool elements of a gas turbine is considered. The temperature of the parts gas turbine should be approximately equal to 850–950 ℃ to ensure its safe operation. This temperature range is suitable for a special type of heat pipes with a liquid metal coolant. It is proposed to reduce the temperature gradients on the turbine blade by mounting porous reservoirs with a liquid metal coolant on the inner surface of the blade body. In a closed porous reservoir, a two-phase state of the coolant is maintained, and heat is transferred by the mutually opposite movement of steam and liquid due to diffusion. The solution to the problem of modeling the processes of motion and phase transition in a porous medium filled with coolant is presented. The problem of thermal conductivity of a multilayer system consisting of a heated shell of a blade and a porous reservoir filled with a liquid metal coolant is formulated, and a numerical solution is proposed. As a practical example of the use of high-temperature heat pipes, a new type of aircraft engine nozzle cooling system has been developed. The example consists of two parts. The first part showed a decreasing temperature gradient in the leading edge of the gas turbine nozzle. The second part concerns the development of the cooling system of the nozzle as the whole.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kopelev, S.Z., Slitenko, A.F.: Designs and calculation of GTE cooling systems. Basis, Kharkiv (1994) Kopelev, S.Z., Slitenko, A.F.: Designs and calculation of GTE cooling systems. Basis, Kharkiv (1994)
2.
go back to reference Frąckowiak, A., Wolfersdorf, J.V., Ciałkowskia, M.: Optimization of cooling of gas turbine blades with channels filled with porous material. Int. J. Therm. Sci. 136, 370–378 (2019)CrossRef Frąckowiak, A., Wolfersdorf, J.V., Ciałkowskia, M.: Optimization of cooling of gas turbine blades with channels filled with porous material. Int. J. Therm. Sci. 136, 370–378 (2019)CrossRef
3.
go back to reference Fan, X., Li, L., Zou, J., Zhou, Y.: Cooling methods for gas turbine blade leading edge: comparative study on impingement cooling, vortex cooling and double vortex cooling. Transfer 100, 133–145 (2019) Fan, X., Li, L., Zou, J., Zhou, Y.: Cooling methods for gas turbine blade leading edge: comparative study on impingement cooling, vortex cooling and double vortex cooling. Transfer 100, 133–145 (2019)
4.
go back to reference Wang, J., Du, C., Wu, F., Li, L., Fan, X.: Investigation of the vortex cooling flow and heat transfer behavior in variable cross-section vortex chambers for gas turbine blade leading edge. Int. Commun. Heat Mass Transf. 108, 104301 (2019)CrossRef Wang, J., Du, C., Wu, F., Li, L., Fan, X.: Investigation of the vortex cooling flow and heat transfer behavior in variable cross-section vortex chambers for gas turbine blade leading edge. Int. Commun. Heat Mass Transf. 108, 104301 (2019)CrossRef
5.
go back to reference Moskalenko, A.B., Kozhevnikov, A.I.: Estimation of gas turbine blades cooling efficiency. Procedia Eng. 150, 61–67 (2016)CrossRef Moskalenko, A.B., Kozhevnikov, A.I.: Estimation of gas turbine blades cooling efficiency. Procedia Eng. 150, 61–67 (2016)CrossRef
6.
go back to reference Sciubba, E.: Air-cooled gas turbine cycles – part 1: an analytical method for the preliminary assessment of blade cooling flow rates. Energy 83, 104–114 (2015)CrossRef Sciubba, E.: Air-cooled gas turbine cycles – part 1: an analytical method for the preliminary assessment of blade cooling flow rates. Energy 83, 104–114 (2015)CrossRef
7.
go back to reference Yoshida, T.: Cooling systems for ultra-high temperature turbines. Ann. N. Y. Acad. Sci. 934(1), 194–205 (2006)CrossRef Yoshida, T.: Cooling systems for ultra-high temperature turbines. Ann. N. Y. Acad. Sci. 934(1), 194–205 (2006)CrossRef
8.
go back to reference Manushin, E.A., Baryshnikova, E.S.: Turbine cooling systems for high temperature gas turbine engines. Results of Science and Technology. Series Turbine Engineering, vol. 2, Moscow (1980) Manushin, E.A., Baryshnikova, E.S.: Turbine cooling systems for high temperature gas turbine engines. Results of Science and Technology. Series Turbine Engineering, vol. 2, Moscow (1980)
9.
go back to reference Chao-Yang, W., Beckermann, C.: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media - I. Formulation. Int. J. Heat Mass Transf. 36(11), 2747–2758 (1993)CrossRef Chao-Yang, W., Beckermann, C.: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media - I. Formulation. Int. J. Heat Mass Transf. 36(11), 2747–2758 (1993)CrossRef
10.
go back to reference Chao-Yang, W., Beckermann, C.: Numerical study of boiling and natural convection in capillary porous media using the two-phase mixture model. Numer. Heat Transf. Part A 26, 375–398 (1994)CrossRef Chao-Yang, W., Beckermann, C.: Numerical study of boiling and natural convection in capillary porous media using the two-phase mixture model. Numer. Heat Transf. Part A 26, 375–398 (1994)CrossRef
11.
go back to reference Tarasov, A.I., Lytvynenko, O.A.: The use of porous media for leveling the temperature field of gas turbine elements. Bull. Natl. Tech. Univ. “Kharkiv Polytech. Inst.” Ser.: “Power Heat Eng. Process. Equip.” 9(12), 175–180 (2002) Tarasov, A.I., Lytvynenko, O.A.: The use of porous media for leveling the temperature field of gas turbine elements. Bull. Natl. Tech. Univ. “Kharkiv Polytech. Inst.” Ser.: “Power Heat Eng. Process. Equip.” 9(12), 175–180 (2002)
12.
go back to reference Tarasov, A.I., Lytvynenko, O.A.: Use of elements with a liquid metal coolant in gas turbine cooling systems. Improv. Turbine Install. Methods Math. Model.: Sat. Sci. Proc., vol. 1, pp. 270–274 (2003) Tarasov, A.I., Lytvynenko, O.A.: Use of elements with a liquid metal coolant in gas turbine cooling systems. Improv. Turbine Install. Methods Math. Model.: Sat. Sci. Proc., vol. 1, pp. 270–274 (2003)
13.
go back to reference Dunn, P.D., Reay, D.A.: Heat Pipes. Pergamon Press, Oxford (1976) Dunn, P.D., Reay, D.A.: Heat Pipes. Pergamon Press, Oxford (1976)
14.
go back to reference Haim, H.B., Torrance, K.E.: Boiling in low-permeability porous materials. Int. J. Heat Mass Transf. 25(1), 45–55 (1982)CrossRef Haim, H.B., Torrance, K.E.: Boiling in low-permeability porous materials. Int. J. Heat Mass Transf. 25(1), 45–55 (1982)CrossRef
15.
go back to reference Avdieieva, O., Lytvynenko, O., Mykhailova, I., Tarasov, O.: Method for Determination Flow Characteristic in the Gas Turbine System. Lecture Notes in Mechanical Engineering, pp. 499–509. Springer, Cham (2019) Avdieieva, O., Lytvynenko, O., Mykhailova, I., Tarasov, O.: Method for Determination Flow Characteristic in the Gas Turbine System. Lecture Notes in Mechanical Engineering, pp. 499–509. Springer, Cham (2019)
Metadata
Title
Possibility of Using Liquid-Metals for Gas Turbine Cooling System
Authors
Oksana Lytvynenko
Oleksandr Tarasov
Iryna Mykhailova
Olena Avdieieva
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50491-5_30

Premium Partners