Skip to main content
Top

2024 | OriginalPaper | Chapter

Precision Livestock Farming Systems Based on Accelerometer Technology and Machine Learning

Authors : Duc-Nghia Tran, Phung Cong Phi Khanh, Tran Binh Duong, Vijender Kumar Solanki, Duc-Tan Tran

Published in: Modern Approaches in IoT and Machine Learning for Cyber Security

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Livestock production systems play a key role in improving human food demand in terms of quality and quantity. It is essential to monitor well health, reproductive and other issues, activities of cattle and poultry to take timely measures when problems occur. In the animal husbandry industry, cow cattle breeding is an important part and is being invested and thrived with the support of high technology. Cow behavior classification has been reported as a way of early detection of diseases, and interactions in the herd that affect health. Behavior changed when the cow is sick may include decreased daily activities such as eating, drinking, walking, standing, or lying down. Surveillance of cows is centralized in the three most common directions, monitoring and classification of cows’ behavior, injury detection, and determination of the time of reproduction. An operational monitoring system supporting livestock usually consists of a central processor, a computer tasked with receiving information and processing information according to behavior classification algorithms, through information cattle activity. The units gather information about cow activity through sensors and send it to the central processor. In addition, the system can store data and upload data to the internet, which is convenient for monitoring cow’s behavior, managing, and processing information. The main objective of this review is to discuss a methodology to implement precision livestock farming (PLF) sensor systems based on accelerometer technology and machine learning. This methodology uses a feature set and data window to describe leg-mounted or collar-mounted acceleration data to improve the performance of behavior classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.M. Abell, M.E. Theurer, R.L. Larson, B.J. White, D.K. Hardin, R.F. Randle, Predicting bull behavior events in a multiple-sire pasture with video analysis, accelerometers, and classification algorithms. Comput. Electron. Agric. 136, 221–227 (2017)CrossRef K.M. Abell, M.E. Theurer, R.L. Larson, B.J. White, D.K. Hardin, R.F. Randle, Predicting bull behavior events in a multiple-sire pasture with video analysis, accelerometers, and classification algorithms. Comput. Electron. Agric. 136, 221–227 (2017)CrossRef
2.
go back to reference M. Alsaaod, J.J. Niederhauser, G. Beer, N. Zehner, G. Schuepbach-Regula, A. Steiner, Development and validation of a novel pedometer algorithm to quantify extended characteristics of the locomotor behavior of dairy cows. J. Dairy Sci. 98, 6236–6242 (2015)CrossRef M. Alsaaod, J.J. Niederhauser, G. Beer, N. Zehner, G. Schuepbach-Regula, A. Steiner, Development and validation of a novel pedometer algorithm to quantify extended characteristics of the locomotor behavior of dairy cows. J. Dairy Sci. 98, 6236–6242 (2015)CrossRef
3.
go back to reference C. Arcidiacono, S.M.C. Porto, M. Mancino, G. Cascone, Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 134, 124–134 (2017)CrossRef C. Arcidiacono, S.M.C. Porto, M. Mancino, G. Cascone, Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 134, 124–134 (2017)CrossRef
4.
go back to reference L. Atallah, B. Lo, R. King, G. Yang, Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circ. Syst 5, 320–329 (2011)CrossRef L. Atallah, B. Lo, R. King, G. Yang, Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circ. Syst 5, 320–329 (2011)CrossRef
5.
go back to reference N. Bareille, F. Beaudeau, S. Billon, A. Robert, P. Faverdin, Effects of health disorders on feed intake and milk production in dairy cows. Livest. Prod. Sci. 83, 53–62 (2003)CrossRef N. Bareille, F. Beaudeau, S. Billon, A. Robert, P. Faverdin, Effects of health disorders on feed intake and milk production in dairy cows. Livest. Prod. Sci. 83, 53–62 (2003)CrossRef
6.
go back to reference J. Barwick, D.W. Lamb, R. Dobos, M. Welch, D. Schneider, M. Trotter, Identifying sheep activity from tri-axial acceleration signals using a moving window classification model. Remote Sens. 12, 646 (2020)CrossRef J. Barwick, D.W. Lamb, R. Dobos, M. Welch, D. Schneider, M. Trotter, Identifying sheep activity from tri-axial acceleration signals using a moving window classification model. Remote Sens. 12, 646 (2020)CrossRef
7.
go back to reference M.R. Borchers, Y.M. Chang, A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 999, 7458–7466 (2016)CrossRef M.R. Borchers, Y.M. Chang, A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 999, 7458–7466 (2016)CrossRef
8.
go back to reference Diosdado, J.A. Vázquez, et al., Classification of behavior in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 3 (2015) Diosdado, J.A. Vázquez, et al., Classification of behavior in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 3 (2015)
9.
go back to reference D.D. Do, H.V. Nguyen, N.X. Tran, T.D. Ta, T.D. Tran, Y.V. Vu, Wireless ad hoc network based on global positioning system for marine monitoring, searching and rescuing (MSnR), in Asia-Pacific Microwave Conference 2011, (IEEE, 2011), pp. 1510–1513 D.D. Do, H.V. Nguyen, N.X. Tran, T.D. Ta, T.D. Tran, Y.V. Vu, Wireless ad hoc network based on global positioning system for marine monitoring, searching and rescuing (MSnR), in Asia-Pacific Microwave Conference 2011, (IEEE, 2011), pp. 1510–1513
10.
go back to reference A. Gian Quoc, C. Nguyen Dinh, N. Tran Duc, T. Tran Duc, S. Kumbesan, Wireless technology for monitoring site-specific landslide in Vietnam. Int. J. Electr. Comput. Eng. 8(6), 4448–4455 (2018) A. Gian Quoc, C. Nguyen Dinh, N. Tran Duc, T. Tran Duc, S. Kumbesan, Wireless technology for monitoring site-specific landslide in Vietnam. Int. J. Electr. Comput. Eng. 8(6), 4448–4455 (2018)
11.
go back to reference Q.T. Hoang, C.P.K. Phung, T.N. Bui, T.P.D. Chu, D.T. Tran, Cow behavior monitoring using a multidimensional acceleration sensor and multiclass SVM. Int. J. Mach. Learn. Networ Collab. Eng. 2, 110–118 (2018) Q.T. Hoang, C.P.K. Phung, T.N. Bui, T.P.D. Chu, D.T. Tran, Cow behavior monitoring using a multidimensional acceleration sensor and multiclass SVM. Int. J. Mach. Learn. Networ Collab. Eng. 2, 110–118 (2018)
12.
go back to reference A. Kamilaris, A. Kartakoullis, F.X. Prenafeta-Boldú, A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)CrossRef A. Kamilaris, A. Kartakoullis, F.X. Prenafeta-Boldú, A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)CrossRef
13.
go back to reference S. Kapil, M. Chawla, M.D. Ansari, On K-means data clustering algorithm with genetic algorithm, in 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), (IEEE, 2016), pp. 202–206CrossRef S. Kapil, M. Chawla, M.D. Ansari, On K-means data clustering algorithm with genetic algorithm, in 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), (IEEE, 2016), pp. 202–206CrossRef
14.
go back to reference P.C.P. Khanh, D.-T. Tran, V.T. Duong, N.H. Thinh, D.-N. Tran, The new design of cows’ behavior classifier based on acceleration data and proposed feature set. Math. Biosci. Eng. 17, 2760–2780 (2020)MathSciNetMATHCrossRef P.C.P. Khanh, D.-T. Tran, V.T. Duong, N.H. Thinh, D.-N. Tran, The new design of cows’ behavior classifier based on acceleration data and proposed feature set. Math. Biosci. Eng. 17, 2760–2780 (2020)MathSciNetMATHCrossRef
15.
go back to reference P.C.P. Khanh, T.T. Long, N.D. Chinh, T. Duc-Tan, Performance evaluation of a multi-stage classification for cow behavior, in 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), (IEEE), pp. 121–125 P.C.P. Khanh, T.T. Long, N.D. Chinh, T. Duc-Tan, Performance evaluation of a multi-stage classification for cow behavior, in 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), (IEEE), pp. 121–125
16.
go back to reference K. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: A review. Sensors 18, 2674 (2018)CrossRef K. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: A review. Sensors 18, 2674 (2018)CrossRef
17.
go back to reference F. Mahmoud, B. Christopher, A. Maher, H. Jürg, S. Alexander, S. Adrian, H. Gaby, Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 187, 37–46 (2017)CrossRef F. Mahmoud, B. Christopher, A. Maher, H. Jürg, S. Alexander, S. Adrian, H. Gaby, Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 187, 37–46 (2017)CrossRef
18.
go back to reference C.W. Maina, IoT at the Grassroots – Exploring the Use of Sensors for Livestock Monitoring (Ist-Africa Week Conference, 2017), pp. 1–8 C.W. Maina, IoT at the Grassroots – Exploring the Use of Sensors for Livestock Monitoring (Ist-Africa Week Conference, 2017), pp. 1–8
19.
go back to reference P. Martiskainen, M. Jarvinen, Cow behavior pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119, 32–38 (2009)CrossRef P. Martiskainen, M. Jarvinen, Cow behavior pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119, 32–38 (2009)CrossRef
20.
go back to reference G. Mattachini, E. Riva, C. Bisaglia, J.C.A.M. Pompe, G. Provolo, Methodology for quantifying the behavioral activity of dairy cows in free-stall barns. J. Anim. Sci. 10, 4899–4907 (2013)CrossRef G. Mattachini, E. Riva, C. Bisaglia, J.C.A.M. Pompe, G. Provolo, Methodology for quantifying the behavioral activity of dairy cows in free-stall barns. J. Anim. Sci. 10, 4899–4907 (2013)CrossRef
21.
go back to reference E.S. Nadimi, H.T. Søgaard, Observer Kalman filter identification and multiple-model adaptive estimation technique for classifying animal behavior using wireless sensor networks. Comput. Electron. Agric. 68, 9–17 (2009)CrossRef E.S. Nadimi, H.T. Søgaard, Observer Kalman filter identification and multiple-model adaptive estimation technique for classifying animal behavior using wireless sensor networks. Comput. Electron. Agric. 68, 9–17 (2009)CrossRef
22.
go back to reference S.C. Nayak, M.D. Ansari, COA-HONN: Cooperative optimization algorithm based higher order neural networks for stock forecasting. Recent Adv. Comput. Sci. Commun. 14(7), 2376–2392 (2021)CrossRef S.C. Nayak, M.D. Ansari, COA-HONN: Cooperative optimization algorithm based higher order neural networks for stock forecasting. Recent Adv. Comput. Sci. Commun. 14(7), 2376–2392 (2021)CrossRef
23.
go back to reference S.C. Nayak, S. Das, M.D. Ansari, Tlbo-fln: Teaching-learning based optimization of functional link neural networks for stock closing price prediction. Int. J. Sensor. Wirel. Commun. Control 10(4), 522–532 (2020)CrossRef S.C. Nayak, S. Das, M.D. Ansari, Tlbo-fln: Teaching-learning based optimization of functional link neural networks for stock closing price prediction. Int. J. Sensor. Wirel. Commun. Control 10(4), 522–532 (2020)CrossRef
24.
go back to reference D.C. Nguyen, T. Duc-Tan, D.N. Tran, Application of compressed sensing in effective power consumption of WSN for landslide scenario, in 2015 Asia Pacific Conference on Multimedia and Broadcasting, (IEEE, 2015a), pp. 1–5 D.C. Nguyen, T. Duc-Tan, D.N. Tran, Application of compressed sensing in effective power consumption of WSN for landslide scenario, in 2015 Asia Pacific Conference on Multimedia and Broadcasting, (IEEE, 2015a), pp. 1–5
25.
go back to reference C.D. Nguyen, T.D. Tran, N.D. Tran, T.H. Huynh, D.T. Nguyen, Flexible and efficient wireless sensor networks for detecting rainfall-induced landslides. Int. J. Distrib. Sensor Network 11(11), 235954 (2015b)CrossRef C.D. Nguyen, T.D. Tran, N.D. Tran, T.H. Huynh, D.T. Nguyen, Flexible and efficient wireless sensor networks for detecting rainfall-induced landslides. Int. J. Distrib. Sensor Network 11(11), 235954 (2015b)CrossRef
26.
go back to reference K. O’Driscoll, L. Boyle, A brief note on the validation of a system for recording lying behavior in dairy cows. Appl. Anim. Behav. Sci. 111, 195–200 (2008)CrossRef K. O’Driscoll, L. Boyle, A brief note on the validation of a system for recording lying behavior in dairy cows. Appl. Anim. Behav. Sci. 111, 195–200 (2008)CrossRef
27.
go back to reference G.M. Pereira, J. Heins Bradley, I. Endres Marcia, Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle. J. Dairy Sci. 101, 2492–2495 (2018)CrossRef G.M. Pereira, J. Heins Bradley, I. Endres Marcia, Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle. J. Dairy Sci. 101, 2492–2495 (2018)CrossRef
28.
go back to reference V.T. Pham, D.A. Nguyen, N.D. Dang, H.H. Pham, V.A. Tran, K. Sandrasegaran, D.T. Tran, Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system. Sensors 18(10), 3186 (2018)CrossRef V.T. Pham, D.A. Nguyen, N.D. Dang, H.H. Pham, V.A. Tran, K. Sandrasegaran, D.T. Tran, Highly accurate step counting at various walking states using low-cost inertial measurement unit support indoor positioning system. Sensors 18(10), 3186 (2018)CrossRef
29.
go back to reference V.T. Pham, Q.B. Le, D.A. Nguyen, N.D. Dang, H.T. Huynh, D.T. Tran, Multi-sensor data fusion in a real-time support system for on-duty firefighters. Sensors 19(21), 4746 (2019)CrossRef V.T. Pham, Q.B. Le, D.A. Nguyen, N.D. Dang, H.T. Huynh, D.T. Tran, Multi-sensor data fusion in a real-time support system for on-duty firefighters. Sensors 19(21), 4746 (2019)CrossRef
30.
go back to reference K.P.C. Phi, K.T. Nguyen, D.-N. Tran, D.-C. Nguyen, T.H. Quang, T. Van Nguyen, D.-T. Tran, Classification of Cow’s Behaviors Based on 3-DoF Accelerations from Cow’s Movements. Int. J. Electr. Comput. Eng. 9, 1656–1662 (2019) K.P.C. Phi, K.T. Nguyen, D.-N. Tran, D.-C. Nguyen, T.H. Quang, T. Van Nguyen, D.-T. Tran, Classification of Cow’s Behaviors Based on 3-DoF Accelerations from Cow’s Movements. Int. J. Electr. Comput. Eng. 9, 1656–1662 (2019)
31.
go back to reference S.M.C. Porto, C. Arcidiacono, Localization and identification performances of a real-time system based on ultra wide band technology for monitoring and tracking dairy cow behavior in semi-open free-stall barn. Comput. Electron. Agric. 108, 221–229 (2014)CrossRef S.M.C. Porto, C. Arcidiacono, Localization and identification performances of a real-time system based on ultra wide band technology for monitoring and tracking dairy cow behavior in semi-open free-stall barn. Comput. Electron. Agric. 108, 221–229 (2014)CrossRef
32.
go back to reference D.V. Rahman, Smith, cattle behavior classification from collar, halter, and ear tag sensors. Inf. Process. Agric. 5, 124–133 (2018) D.V. Rahman, Smith, cattle behavior classification from collar, halter, and ear tag sensors. Inf. Process. Agric. 5, 124–133 (2018)
33.
go back to reference B. Robert, B.J. White, D.G. Renter, R.L. Larson, Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 67(1-2), 80–84 (2009)CrossRef B. Robert, B.J. White, D.G. Renter, R.L. Larson, Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 67(1-2), 80–84 (2009)CrossRef
34.
go back to reference B.D. Robért, B.J. White, D.G. Renter, R.L. Larson, Determination of lying behavior patterns in healthy beef cattle by use of wireless accelerometers. Am. J. Vet. Res. 72, 467–473 (2011)CrossRef B.D. Robért, B.J. White, D.G. Renter, R.L. Larson, Determination of lying behavior patterns in healthy beef cattle by use of wireless accelerometers. Am. J. Vet. Res. 72, 467–473 (2011)CrossRef
35.
go back to reference M.S. Shahriar, D. Smith, Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 128, 20–26 (2016)CrossRef M.S. Shahriar, D. Smith, Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 128, 20–26 (2016)CrossRef
36.
go back to reference M. Sugiyama, M. Kawanabe, Machine learning in Non-Stationary Environments (MIT Press, 2012)CrossRef M. Sugiyama, M. Kawanabe, Machine learning in Non-Stationary Environments (MIT Press, 2012)CrossRef
37.
go back to reference R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, vol 135 (MIT Press, Cambridge, 1998)MATH R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, vol 135 (MIT Press, Cambridge, 1998)MATH
38.
go back to reference J.M. Talavera, L.E. Tobón, J.A. Gómez, M.A. Culman, J.M. Aranda, D.T. Parra, L.E. Garreta, Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 142, 283–297 (2017)CrossRef J.M. Talavera, L.E. Tobón, J.A. Gómez, M.A. Culman, J.M. Aranda, D.T. Parra, L.E. Garreta, Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 142, 283–297 (2017)CrossRef
39.
go back to reference T.D. Tan, N. Van Tinh, Reliable fall detection system using an 3-DOF accelerometer and cascade posture recognitions, in Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, (IEEE, 2014), pp. 1–6 T.D. Tan, N. Van Tinh, Reliable fall detection system using an 3-DOF accelerometer and cascade posture recognitions, in Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, (IEEE, 2014), pp. 1–6
40.
go back to reference T.D. Tan, L.M. Ha, N.T. Long, N.D. Duc, N.P. Thuy, Integration of inertial navigation system and global positioning system: Performance analysis and measurements, in 2007 International Conference on Intelligent and Advanced Systems, (IEEE, 2007), pp. 1047–1050CrossRef T.D. Tan, L.M. Ha, N.T. Long, N.D. Duc, N.P. Thuy, Integration of inertial navigation system and global positioning system: Performance analysis and measurements, in 2007 International Conference on Intelligent and Advanced Systems, (IEEE, 2007), pp. 1047–1050CrossRef
41.
go back to reference T.D. Tan, L.M. Ha, N.T. Long, H.H. Tue, N.P. Thuy, Novel MEMS INS/GPS integration scheme using parallel Kalman filters, in 2008 IEEE/SICE International Symposium on System Integration, (IEEE, 2008), pp. 72–76CrossRef T.D. Tan, L.M. Ha, N.T. Long, H.H. Tue, N.P. Thuy, Novel MEMS INS/GPS integration scheme using parallel Kalman filters, in 2008 IEEE/SICE International Symposium on System Integration, (IEEE, 2008), pp. 72–76CrossRef
42.
go back to reference T.D. Tan, L.M. Ha, N.T. Anh, A real-time vibration monitoring for vehicle based on 3-DOF MEMS accelerometer (Proc. 2010 Int. Conf. Computational Intelligence and Vehicular System, 2010), pp. 160–164 T.D. Tan, L.M. Ha, N.T. Anh, A real-time vibration monitoring for vehicle based on 3-DOF MEMS accelerometer (Proc. 2010 Int. Conf. Computational Intelligence and Vehicular System, 2010), pp. 160–164
43.
go back to reference T.D. Tan, N.T. Anh, G.Q. Anh, Low-cost structural health monitoring scheme using MEMS-based accelerometers, in 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, (IEEE, 2011), pp. 217–220CrossRef T.D. Tan, N.T. Anh, G.Q. Anh, Low-cost structural health monitoring scheme using MEMS-based accelerometers, in 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, (IEEE, 2011), pp. 217–220CrossRef
44.
go back to reference D.T. Tran, D.C. Nguyen, D.N. Tran, D.T. Ta, Development of a rainfall-triggered landslide system using wireless accelerometer network. Int. J. Adv. Comput. Technol. 7(5), 14 (2015) D.T. Tran, D.C. Nguyen, D.N. Tran, D.T. Ta, Development of a rainfall-triggered landslide system using wireless accelerometer network. Int. J. Adv. Comput. Technol. 7(5), 14 (2015)
46.
go back to reference S. Tsairidou, A. Allen, G. Banos, M. Coffey, O. Anacleto, A.W. Byrne, R.A. Skuce, E.J. Glass, J.A. Woolliams, A.B. Doeschl-Wilson, Can we breed cattle for lower bovine TB infectivity? Front. Vet. Sci 5, 310 (2018)CrossRef S. Tsairidou, A. Allen, G. Banos, M. Coffey, O. Anacleto, A.W. Byrne, R.A. Skuce, E.J. Glass, J.A. Woolliams, A.B. Doeschl-Wilson, Can we breed cattle for lower bovine TB infectivity? Front. Vet. Sci 5, 310 (2018)CrossRef
47.
go back to reference J.J. Valletta, C. Torney, M. Kings, A. Thornton, J. Madden, Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017)CrossRef J.J. Valletta, C. Torney, M. Kings, A. Thornton, J. Madden, Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017)CrossRef
48.
49.
go back to reference J. Wang, Z. He, Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data. PLoS One 13 (2018) J. Wang, Z. He, Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data. PLoS One 13 (2018)
50.
go back to reference J. Wang, Z. He, J. Ji, K. Zhao, H. Zhang, IoT-based measurement system for classifying cow behavior from tri-axial accelerometer. Ciência Rural 49, 1–13 (2019)CrossRef J. Wang, Z. He, J. Ji, K. Zhao, H. Zhang, IoT-based measurement system for classifying cow behavior from tri-axial accelerometer. Ciência Rural 49, 1–13 (2019)CrossRef
51.
go back to reference H.C. Weigele, L. Gygax, A. Steiner, B. Wechsler, J.B. Burla, Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 3101, 2370–2382 (2018)CrossRef H.C. Weigele, L. Gygax, A. Steiner, B. Wechsler, J.B. Burla, Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 3101, 2370–2382 (2018)CrossRef
52.
go back to reference N. Zehner, C. Umstatter, System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 136, 31–41 (2017)CrossRef N. Zehner, C. Umstatter, System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 136, 31–41 (2017)CrossRef
53.
go back to reference X. Zhu, A.B. Goldberg, Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3, 1–130 (2009)MATH X. Zhu, A.B. Goldberg, Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3, 1–130 (2009)MATH
Metadata
Title
Precision Livestock Farming Systems Based on Accelerometer Technology and Machine Learning
Authors
Duc-Nghia Tran
Phung Cong Phi Khanh
Tran Binh Duong
Vijender Kumar Solanki
Duc-Tan Tran
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-09955-7_14

Premium Partner