Skip to main content
Top
Published in: International Journal of Energy and Environmental Engineering 1/2023

20-07-2022 | Original Research

Predicting the techno-economic performance of a large-scale second-generation bioethanol production plant: a case study for Kenya

Authors: Wiseman Ngigi, Zachary Siagi, Anil Kumar, Moses Arowo

Published in: International Journal of Energy and Environmental Engineering | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the effect of varying cost and process parameters on bioethanol production rate and the minimum bioethanol selling price (MBSP) during large-scale production of second-generation bioethanol from Sila sorghum stalks found in Kenya. Aspen Plus was used to model and simulate the process that was considered in this study. The flow rate of biomass was varied between 10,000 and 300,000 kg/h which gave rise to a bioethanol flow rate of between 2134.49 and 62,707.33 kg/h. Bioethanol production rate decreased from 21,759.5 to 19,397.6 kg/h when the feed stage position in the beer column increased from 2 to 8. MBSP increased from $0.81/L to $1.11/L when the cost of biomass was varied from $20/tonne to $100/tonne. MBSP increased from $0.9/L to $1.0/L when the cost of enzymes was varied by − 50% and + 50%. MBSP increased from $0.83/L to $1.54/L when discount rate varied by 5% and 30%. MBSP increased from $0.85/L to $1.06/L when fixed capital investment was varied by -35% and + 35%. MBSP reduced from $1.28/L to $0.95/L when plant life varied from 10 to 30 years. MBSP increased from $0.89/L to $0.99/L when income tax rate varied from 0 to 40%. The study indicates that second-generation bioethanol is able to compete with gasoline in Kenya when no levies and taxes are imposed on the MBSP, at a plant life of 15 years and beyond and at an income tax rate of between 0 to 40%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Bonomi, A.: Second generation ethanol in Brazil: compete with electricity production. Bioresour. Technol. 102, 8964–8971 (2011)CrossRef Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Bonomi, A.: Second generation ethanol in Brazil: compete with electricity production. Bioresour. Technol. 102, 8964–8971 (2011)CrossRef
2.
go back to reference Mustafa, B., Havva, B., Cahide, O.: Progress in bioethanol processing. Prog. Energy Combust. Sci. 34, 551–573 (2008)CrossRef Mustafa, B., Havva, B., Cahide, O.: Progress in bioethanol processing. Prog. Energy Combust. Sci. 34, 551–573 (2008)CrossRef
3.
go back to reference Kumar, R., Tabatabaei, M., Karimi, K., Sárvári, H.I.: Recent updates on lignocellulosic biomass derived ethanol—a review. Biofuel Res. J. 9, 347–356 (2016)CrossRef Kumar, R., Tabatabaei, M., Karimi, K., Sárvári, H.I.: Recent updates on lignocellulosic biomass derived ethanol—a review. Biofuel Res. J. 9, 347–356 (2016)CrossRef
4.
go back to reference Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M.: An overview of second-generation biofuel technologies. Bioresour. Technol. 101, 1570–1580 (2010)CrossRef Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M.: An overview of second-generation biofuel technologies. Bioresour. Technol. 101, 1570–1580 (2010)CrossRef
5.
go back to reference Hector, H., Hughes, S., Liang-Li, X.: Developing yeast strains for biomass to ethanol production. Ethanol Producer Magazine, June 2008 Issue (2008) Hector, H., Hughes, S., Liang-Li, X.: Developing yeast strains for biomass to ethanol production. Ethanol Producer Magazine, June 2008 Issue (2008)
6.
go back to reference Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)CrossRef Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)CrossRef
7.
go back to reference Li, Q., He, Y., Xian, M., Jun, G., Xu, X., Yang, J.: Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570–3575 (2009)CrossRef Li, Q., He, Y., Xian, M., Jun, G., Xu, X., Yang, J.: Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570–3575 (2009)CrossRef
8.
go back to reference Salimi, M.N., Lim, S.E., Yusoff, A.H., Jamlos, M.F.: Conversion of rice husk into fermentable sugar by two stage hydrolysis. J. Phys. Conf. Ser. 908, 012056 (2017)CrossRef Salimi, M.N., Lim, S.E., Yusoff, A.H., Jamlos, M.F.: Conversion of rice husk into fermentable sugar by two stage hydrolysis. J. Phys. Conf. Ser. 908, 012056 (2017)CrossRef
9.
go back to reference Svetlana, N., Jelena, P., Ljiljana, M.: Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem. Ind. Chem. Eng. 22, 375–390 (2016)CrossRef Svetlana, N., Jelena, P., Ljiljana, M.: Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem. Ind. Chem. Eng. 22, 375–390 (2016)CrossRef
10.
go back to reference Chang, V.S., Holtzapple, M.T.F.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. Res. 84, 5–37 (2000)CrossRef Chang, V.S., Holtzapple, M.T.F.: Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. Res. 84, 5–37 (2000)CrossRef
11.
go back to reference Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)CrossRef Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)CrossRef
12.
go back to reference Zhang, Y.P., Lynd, L.R.: Towards an aggregated understanding of enzymatic hydrolysis of cellulose: non complexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004)CrossRef Zhang, Y.P., Lynd, L.R.: Towards an aggregated understanding of enzymatic hydrolysis of cellulose: non complexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004)CrossRef
13.
go back to reference Afsahi, B., Kazemi, A., Kheirolomoom, A., Nejati, S.: Immobilization of cellulase on non-porous ultrafine silica particles. Sci. Iran. 14(4), 379–383 (2007) Afsahi, B., Kazemi, A., Kheirolomoom, A., Nejati, S.: Immobilization of cellulase on non-porous ultrafine silica particles. Sci. Iran. 14(4), 379–383 (2007)
14.
go back to reference Lili, W., Xiaoyan, Y., Jing, S.: Immobilization of cellulase in nano fibrous PVA membranes by electrospinning. J. Membr. Sci. 250, 167–173 (2005)CrossRef Lili, W., Xiaoyan, Y., Jing, S.: Immobilization of cellulase in nano fibrous PVA membranes by electrospinning. J. Membr. Sci. 250, 167–173 (2005)CrossRef
15.
go back to reference Muktham, R., Bhargava, S.K., Bankupalli, S., Ball, A.S.: A review on 1st and 2nd generation bioethanol production—recent progress. J. Sustain. Bioenergy Syst. 6, 72–92 (2016)CrossRef Muktham, R., Bhargava, S.K., Bankupalli, S., Ball, A.S.: A review on 1st and 2nd generation bioethanol production—recent progress. J. Sustain. Bioenergy Syst. 6, 72–92 (2016)CrossRef
16.
go back to reference Joshi, B., Bhatt, M.R., Sharma, D., Joshi, J., Malla, R., Sreerama, L.: Lignocellulosic ethanol production: current practices and recent developments: review. Biotechnol. Mol. Biol. 6, 172–182 (2011) Joshi, B., Bhatt, M.R., Sharma, D., Joshi, J., Malla, R., Sreerama, L.: Lignocellulosic ethanol production: current practices and recent developments: review. Biotechnol. Mol. Biol. 6, 172–182 (2011)
17.
go back to reference Tan, K.T., Lee, K.T., Mohamed, A.R.: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy 36, 3360–3365 (2008)CrossRef Tan, K.T., Lee, K.T., Mohamed, A.R.: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy 36, 3360–3365 (2008)CrossRef
19.
go back to reference Mailu S.K., Mulinge, W.: Excise tax changes and their impact on Gadam sorghum demand in Kenya. In: 5th International Conference of AAAE, United Nations Conference Centre, Addis Ababa, Ethiopia, 23–26th September (2016) Mailu S.K., Mulinge, W.: Excise tax changes and their impact on Gadam sorghum demand in Kenya. In: 5th International Conference of AAAE, United Nations Conference Centre, Addis Ababa, Ethiopia, 23–26th September (2016)
20.
go back to reference Lopes, T.F., Cabanas, C., Silva, A., Fonseca, D., Santos, E., Guerra, L.T., Sheahan, C., Reisa, A., Girioa, F.: Process simulation and techno-economic assessment for direct production of advanced bioethanol using a genetically modified Synechocystis sp. Bioresour. Technol. Rep. 6, 113–122 (2019)CrossRef Lopes, T.F., Cabanas, C., Silva, A., Fonseca, D., Santos, E., Guerra, L.T., Sheahan, C., Reisa, A., Girioa, F.: Process simulation and techno-economic assessment for direct production of advanced bioethanol using a genetically modified Synechocystis sp. Bioresour. Technol. Rep. 6, 113–122 (2019)CrossRef
21.
go back to reference Boakye-Boaten, N.A., Kurkalova, L., Xiu, S., Shahbazi, A.: Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass Bioenergy 98, 85–94 (2017)CrossRef Boakye-Boaten, N.A., Kurkalova, L., Xiu, S., Shahbazi, A.: Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass Bioenergy 98, 85–94 (2017)CrossRef
22.
go back to reference Aspen Plus: Aspen Plus User Guide, Version 10.2. Aspen Technology, Inc., Cambridge, MA (2000) Aspen Plus: Aspen Plus User Guide, Version 10.2. Aspen Technology, Inc., Cambridge, MA (2000)
23.
go back to reference Tgarguifa, A., Abderafi, S., Bounahmidi, T.: Modeling and optimization of distillation to produce bioethanol. Energy Procedia 139, 43–48 (2017)CrossRef Tgarguifa, A., Abderafi, S., Bounahmidi, T.: Modeling and optimization of distillation to produce bioethanol. Energy Procedia 139, 43–48 (2017)CrossRef
24.
go back to reference Zhao, L., Zhang, X., Xu, J., Ou, X., Chang, S., Wu, M.: Techno-economic analysis of bioethanol production from lignocellulosic biomass in China: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies 8, 4096–4117 (2015)CrossRef Zhao, L., Zhang, X., Xu, J., Ou, X., Chang, S., Wu, M.: Techno-economic analysis of bioethanol production from lignocellulosic biomass in China: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies 8, 4096–4117 (2015)CrossRef
25.
go back to reference da Silva, A.R.G., Ortega, C.E.T., Rong, B.G.: Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour. Technol. 218, 561–570 (2016)CrossRef da Silva, A.R.G., Ortega, C.E.T., Rong, B.G.: Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour. Technol. 218, 561–570 (2016)CrossRef
26.
go back to reference Porzio, G.F., Prussi, M., Chiaramonti, D., Pari, L.: Modeling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products. J. Clean. Prod. 34, 66–75 (2012)CrossRef Porzio, G.F., Prussi, M., Chiaramonti, D., Pari, L.: Modeling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products. J. Clean. Prod. 34, 66–75 (2012)CrossRef
27.
go back to reference Quintero, J.A., Moncada, J., Cardona, C.A.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013)CrossRef Quintero, J.A., Moncada, J., Cardona, C.A.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013)CrossRef
28.
go back to reference PIEA. Petroleum Institute of East Africa: quarterly industry report on petroleum sale in Kenya, Nairobi, PIEA (2019) PIEA. Petroleum Institute of East Africa: quarterly industry report on petroleum sale in Kenya, Nairobi, PIEA (2019)
29.
go back to reference Dalberg. Scaling up clean cooking in urban Kenya with LPG & bio-ethanol, a market and policy analysis (2018) Dalberg. Scaling up clean cooking in urban Kenya with LPG & bio-ethanol, a market and policy analysis (2018)
30.
go back to reference Ministry of Energy Kenya: National Energy Policy. Kenya Government Press, Nairobi (2018) Ministry of Energy Kenya: National Energy Policy. Kenya Government Press, Nairobi (2018)
31.
go back to reference Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., Kothandaraman, G.: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, S20–S28 (2010)CrossRef Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., Kothandaraman, G.: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, S20–S28 (2010)CrossRef
32.
go back to reference Aspen Plus V8.4. AspenTech Inc., Burlington, MA (2013) Aspen Plus V8.4. AspenTech Inc., Burlington, MA (2013)
33.
go back to reference Barreraa, I., Amezcua-Allieri, M.A., Estupinan, L., Martínez, T., Aburtob, J.: Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem. Eng. Res. Des. 107, 91–101 (2016)CrossRef Barreraa, I., Amezcua-Allieri, M.A., Estupinan, L., Martínez, T., Aburtob, J.: Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem. Eng. Res. Des. 107, 91–101 (2016)CrossRef
34.
go back to reference Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A.: Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. National Renewable Energy Laboratory Golden, Golden (2011)CrossRef Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A.: Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. National Renewable Energy Laboratory Golden, Golden (2011)CrossRef
35.
go back to reference Ngigi, W.T.: Optimizing the conversion of pretreated sila sorghum stalks to simple sugars using immobilized enzymes. Int. Res. J. Eng. Technol. 4, 1–5 (2017) Ngigi, W.T.: Optimizing the conversion of pretreated sila sorghum stalks to simple sugars using immobilized enzymes. Int. Res. J. Eng. Technol. 4, 1–5 (2017)
36.
go back to reference Sinnott, R.K.: Coulson and Richardson, Chemical Engineering Design, vol. 6, 3rd edn. Butterworth-Heinemann Linacre House, Oxford (2002) Sinnott, R.K.: Coulson and Richardson, Chemical Engineering Design, vol. 6, 3rd edn. Butterworth-Heinemann Linacre House, Oxford (2002)
37.
go back to reference EPRA: Clarification on the high petroleum pump prices for the period 15th March to 14th April 2021, Press release, Nairobi (2021) EPRA: Clarification on the high petroleum pump prices for the period 15th March to 14th April 2021, Press release, Nairobi (2021)
38.
go back to reference Tgarguifa, A., Abderafi, S., Bounahmidi, T.: Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy. 122, 239–250 (2018)CrossRef Tgarguifa, A., Abderafi, S., Bounahmidi, T.: Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy. 122, 239–250 (2018)CrossRef
39.
go back to reference Frankó, B., Galbe, M., Wallberg, O.: Bioethanol production from forestry residues: a comparative techno-economic analysis. Appl. Energy. 184, 727–736 (2016)CrossRef Frankó, B., Galbe, M., Wallberg, O.: Bioethanol production from forestry residues: a comparative techno-economic analysis. Appl. Energy. 184, 727–736 (2016)CrossRef
40.
go back to reference Osborne, S.: Energy in 2020: assessing the economic effects of commercialization of cellulosic ethanol, office of competition and economic analysis, manufacturing and services competitiveness report (2007) Osborne, S.: Energy in 2020: assessing the economic effects of commercialization of cellulosic ethanol, office of competition and economic analysis, manufacturing and services competitiveness report (2007)
41.
go back to reference Republic of Kenya: The Income Tax Act (CAP 470). Kenya Government Press, Nairobi (2021) Republic of Kenya: The Income Tax Act (CAP 470). Kenya Government Press, Nairobi (2021)
42.
go back to reference Li, H., Liu, H., Li, S.: Feasibility study on bioethanol production by one phase transition separation based on advanced solid-state fermentation. Energies 14, 6301 (2021)CrossRef Li, H., Liu, H., Li, S.: Feasibility study on bioethanol production by one phase transition separation based on advanced solid-state fermentation. Energies 14, 6301 (2021)CrossRef
43.
go back to reference Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33, 478–491 (2009)CrossRef Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33, 478–491 (2009)CrossRef
Metadata
Title
Predicting the techno-economic performance of a large-scale second-generation bioethanol production plant: a case study for Kenya
Authors
Wiseman Ngigi
Zachary Siagi
Anil Kumar
Moses Arowo
Publication date
20-07-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Energy and Environmental Engineering / Issue 1/2023
Print ISSN: 2008-9163
Electronic ISSN: 2251-6832
DOI
https://doi.org/10.1007/s40095-022-00517-1

Other articles of this Issue 1/2023

International Journal of Energy and Environmental Engineering 1/2023 Go to the issue